The Stacks project

Lemma 91.2.9. If $A \to B$ is a local complete intersection ring map, then there exists a solution to (91.2.0.1).

First proof. Write $B = A[x_1, \ldots , x_ n]/J$. By More on Algebra, Definition 15.33.2 the ideal $J$ is Koszul-regular. This implies $J$ is $H_1$-regular and quasi-regular, see More on Algebra, Section 15.32. Let $J' \subset A'[x_1, \ldots , x_ n]$ be the inverse image of $J$. Denote $I[x_1, \ldots , x_ n]$ the kernel of $A'[x_1, \ldots , x_ n] \to A[x_1, \ldots , x_ n]$. By More on Algebra, Lemma 15.32.5 we have $I[x_1, \ldots , x_ n] \cap (J')^2 = J'I[x_1, \ldots , x_ n] = JI[x_1, \ldots , x_ n]$. Hence we obtain a short exact sequence

\[ 0 \to I \otimes _ A B \to J'/(J')^2 \to J/J^2 \to 0 \]

Since $J/J^2$ is projective (More on Algebra, Lemma 15.32.3) we can choose a splitting of this sequence

\[ J'/(J')^2 = I \otimes _ A B \oplus J/J^2 \]

Let $(J')^2 \subset J'' \subset J'$ be the elements which map to the second summand in the decomposition above. Then

\[ 0 \to I \otimes _ A B \to A'[x_1, \ldots , x_ n]/J'' \to B \to 0 \]

is a solution to (91.2.0.1) with $N = I \otimes _ A B$. The general case is obtained by doing a pushout along the given map $I \otimes _ A B \to N$. $\square$

Second proof. Please read Remark 91.2.8 before reading this proof. By More on Algebra, Lemma 15.33.6 the maps $\mathop{N\! L}\nolimits _{A'/A} \otimes _ A B \to \mathop{N\! L}\nolimits _{B/A'} \to \mathop{N\! L}\nolimits _{B/A}$ do form a distinguished triangle in $D(B)$. Hence it suffices to show that $\mathop{\mathrm{Ext}}\nolimits ^2_{B/A}(\mathop{N\! L}\nolimits _{B/A}, N)$ vanishes. By More on Algebra, Lemma 15.85.4 the complex $\mathop{N\! L}\nolimits _{B/A}$ is perfect of tor-amplitude in $[-1, 0]$. This implies our $\mathop{\mathrm{Ext}}\nolimits ^2$ vanishes for example by More on Algebra, Lemma 15.76.1 part (1). $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 91.2: Deformations of rings and the naive cotangent complex

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08S6. Beware of the difference between the letter 'O' and the digit '0'.