The Stacks project

90.2 Deformations of rings and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation theory. We start with a surjective ring map $A' \to A$ whose kernel is an ideal $I$ of square zero. Moreover we assume given a ring map $A \to B$, a $B$-module $N$, and an $A$-module map $c : I \to N$. In this section we ask ourselves whether we can find the question mark fitting into the following diagram

90.2.0.1
\begin{equation} \label{defos-equation-to-solve} \vcenter { \xymatrix{ 0 \ar[r] & N \ar[r] & {?} \ar[r] & B \ar[r] & 0 \\ 0 \ar[r] & I \ar[u]^ c \ar[r] & A' \ar[u] \ar[r] & A \ar[u] \ar[r] & 0 } } \end{equation}

and moreover how unique the solution is (if it exists). More precisely, we look for a surjection of $A'$-algebras $B' \to B$ whose kernel is an ideal of square zero and is identified with $N$ such that $A' \to B'$ induces the given map $c$. We will say $B'$ is a solution to (90.2.0.1).

Lemma 90.2.1. Given a commutative diagram

\[ \xymatrix{ & 0 \ar[r] & N_2 \ar[r] & B'_2 \ar[r] & B_2 \ar[r] & 0 \\ & 0 \ar[r]|\hole & I_2 \ar[u]_{c_2} \ar[r] & A'_2 \ar[u] \ar[r]|\hole & A_2 \ar[u] \ar[r] & 0 \\ 0 \ar[r] & N_1 \ar[ruu] \ar[r] & B'_1 \ar[r] & B_1 \ar[ruu] \ar[r] & 0 \\ 0 \ar[r] & I_1 \ar[ruu]|\hole \ar[u]^{c_1} \ar[r] & A'_1 \ar[ruu]|\hole \ar[u] \ar[r] & A_1 \ar[ruu]|\hole \ar[u] \ar[r] & 0 } \]

with front and back solutions to (90.2.0.1) we have

  1. There exist a canonical element in $\mathop{\mathrm{Ext}}\nolimits ^1_{B_1}(\mathop{N\! L}\nolimits _{B_1/A_1}, N_2)$ whose vanishing is a necessary and sufficient condition for the existence of a ring map $B'_1 \to B'_2$ fitting into the diagram.

  2. If there exists a map $B'_1 \to B'_2$ fitting into the diagram the set of all such maps is a principal homogeneous space under $\mathop{\mathrm{Hom}}\nolimits _{B_1}(\Omega _{B_1/A_1}, N_2)$.

Proof. Let $E = B_1$ viewed as a set. Consider the surjection $A_1[E] \to B_1$ with kernel $J$ used to define the naive cotangent complex by the formula

\[ \mathop{N\! L}\nolimits _{B_1/A_1} = (J/J^2 \to \Omega _{A_1[E]/A_1} \otimes _{A_1[E]} B_1) \]

in Algebra, Section 10.134. Since $\Omega _{A_1[E]/A_1} \otimes B_1$ is a free $B_1$-module we have

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{B_1}(\mathop{N\! L}\nolimits _{B_1/A_1}, N_2) = \frac{\mathop{\mathrm{Hom}}\nolimits _{B_1}(J/J^2, N_2)}{\mathop{\mathrm{Hom}}\nolimits _{B_1}(\Omega _{A_1[E]/A_1} \otimes B_1, N_2)} \]

We will construct an obstruction in the module on the right. Let $J' = \mathop{\mathrm{Ker}}(A'_1[E] \to B_1)$. Note that there is a surjection $J' \to J$ whose kernel is $I_1A_1[E]$. For every $e \in E$ denote $x_ e \in A_1[E]$ the corresponding variable. Choose a lift $y_ e \in B'_1$ of the image of $x_ e$ in $B_1$ and a lift $z_ e \in B'_2$ of the image of $x_ e$ in $B_2$. These choices determine $A'_1$-algebra maps

\[ A'_1[E] \to B'_1 \quad \text{and}\quad A'_1[E] \to B'_2 \]

The first of these gives a map $J' \to N_1$, $f' \mapsto f'(y_ e)$ and the second gives a map $J' \to N_2$, $f' \mapsto f'(z_ e)$. A calculation shows that these maps annihilate $(J')^2$. Because the left square of the diagram (involving $c_1$ and $c_2$) commutes we see that these maps agree on $I_1A_1[E]$ as maps into $N_2$. Observe that $B'_1$ is the pushout of $J' \to A'_1[B_1]$ and $J' \to N_1$. Thus, if the maps $J' \to N_1 \to N_2$ and $J' \to N_2$ agree, then we obtain a map $B'_1 \to B'_2$ fitting into the diagram. Thus we let the obstruction be the class of the map

\[ J/J^2 \to N_2,\quad f \mapsto f'(z_ e) - \nu (f'(y_ e)) \]

where $\nu : N_1 \to N_2$ is the given map and where $f' \in J'$ is a lift of $f$. This is well defined by our remarks above. Note that we have the freedom to modify our choices of $z_ e$ into $z_ e + \delta _{2, e}$ and $y_ e$ into $y_ e + \delta _{1, e}$ for some $\delta _{i, e} \in N_ i$. This will modify the map above into

\[ f \mapsto f'(z_ e + \delta _{2, e}) - \nu (f'(y_ e + \delta _{1, e})) = f'(z_ e) - \nu (f'(z_ e)) + \sum (\delta _{2, e} - \nu (\delta _{1, e}))\frac{\partial f}{\partial x_ e} \]

This means exactly that we are modifying the map $J/J^2 \to N_2$ by the composition $J/J^2 \to \Omega _{A_1[E]/A_1} \otimes B_1 \to N_2$ where the second map sends $\text{d}x_ e$ to $\delta _{2, e} - \nu (\delta _{1, e})$. Thus our obstruction is well defined and is zero if and only if a lift exists.

Part (2) comes from the observation that given two maps $\varphi , \psi : B'_1 \to B'_2$ fitting into the diagram, then $\varphi - \psi $ factors through a map $D : B_1 \to N_2$ which is an $A_1$-derivation:

\begin{align*} D(fg) & = \varphi (f'g') - \psi (f'g') \\ & = \varphi (f')\varphi (g') - \psi (f')\psi (g') \\ & = (\varphi (f') - \psi (f'))\varphi (g') + \psi (f')(\varphi (g') - \psi (g')) \\ & = gD(f) + fD(g) \end{align*}

Thus $D$ corresponds to a unique $B_1$-linear map $\Omega _{B_1/A_1} \to N_2$. Conversely, given such a linear map we get a derivation $D$ and given a ring map $\psi : B'_1 \to B'_2$ fitting into the diagram the map $\psi + D$ is another ring map fitting into the diagram. $\square$

Lemma 90.2.2. If there exists a solution to (90.2.0.1), then the set of isomorphism classes of solutions is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N)$.

Proof. We observe right away that given two solutions $B'_1$ and $B'_2$ to (90.2.0.1) we obtain by Lemma 90.2.1 an obstruction element $o(B'_1, B'_2) \in \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N)$ to the existence of a map $B'_1 \to B'_2$. Clearly, this element is the obstruction to the existence of an isomorphism, hence separates the isomorphism classes. To finish the proof it therefore suffices to show that given a solution $B'$ and an element $\xi \in \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N)$ we can find a second solution $B'_\xi $ such that $o(B', B'_\xi ) = \xi $.

Let $E = B$ viewed as a set. Consider the surjection $A[E] \to B$ with kernel $J$ used to define the naive cotangent complex by the formula

\[ \mathop{N\! L}\nolimits _{B/A} = (J/J^2 \to \Omega _{A[E]/A} \otimes _{A[E]} B) \]

in Algebra, Section 10.134. Since $\Omega _{A[E]/A} \otimes B$ is a free $B$-module we have

\[ \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N) = \frac{\mathop{\mathrm{Hom}}\nolimits _ B(J/J^2, N)}{\mathop{\mathrm{Hom}}\nolimits _ B(\Omega _{A[E]/A} \otimes B, N)} \]

Thus we may represent $\xi $ as the class of a morphism $\delta : J/J^2 \to N$.

For every $e \in E$ denote $x_ e \in A[E]$ the corresponding variable. Choose a lift $y_ e \in B'$ of the image of $x_ e$ in $B$. These choices determine an $A'$-algebra map $\varphi : A'[E] \to B'$. Let $J' = \mathop{\mathrm{Ker}}(A'[E] \to B)$. Observe that $\varphi $ induces a map $\varphi |_{J'} : J' \to N$ and that $B'$ is the pushout, as in the following diagram

\[ \xymatrix{ 0 \ar[r] & N \ar[r] & B' \ar[r] & B \ar[r] & 0 \\ 0 \ar[r] & J' \ar[u]^{\varphi |_{J'}} \ar[r] & A'[E] \ar[u] \ar[r] & B \ar[u]_{=} \ar[r] & 0 } \]

Let $\psi : J' \to N$ be the sum of the map $\varphi |_{J'}$ and the composition

\[ J' \to J'/(J')^2 \to J/J^2 \xrightarrow {\delta } N. \]

Then the pushout along $\psi $ is an other ring extension $B'_\xi $ fitting into a diagram as above. A calculation shows that $o(B', B'_\xi ) = \xi $ as desired. $\square$

Lemma 90.2.3. Let $A$ be a ring. Let $B$ be an $A$-algebra. Let $N$ be a $B$-module. The set of isomorphism classes of extensions of $A$-algebras

\[ 0 \to N \to B' \to B \to 0 \]

where $N$ is an ideal of square zero is canonically bijective to $\mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N)$.

Proof. To prove this we apply the previous results to the case where (90.2.0.1) is given by the diagram

\[ \xymatrix{ 0 \ar[r] & N \ar[r] & {?} \ar[r] & B \ar[r] & 0 \\ 0 \ar[r] & 0 \ar[u] \ar[r] & A \ar[u] \ar[r]^{\text{id}} & A \ar[u] \ar[r] & 0 } \]

Thus our lemma follows from Lemma 90.2.2 and the fact that there exists a solution, namely $N \oplus B$. (See remark below for a direct construction of the bijection.) $\square$

Remark 90.2.4. Let $A \to B$ and $N$ be as in Lemma 90.2.3. Let $\alpha : P \to B$ be a presentation of $B$ over $A$, see Algebra, Section 10.134. With $J = \mathop{\mathrm{Ker}}(\alpha )$ the naive cotangent complex $\mathop{N\! L}\nolimits (\alpha )$ associated to $\alpha $ is the complex $J/J^2 \to \Omega _{P/A} \otimes _ P B$. We have

\[ \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits (\alpha ), N) = \mathop{\mathrm{Coker}}\left(\mathop{\mathrm{Hom}}\nolimits _ B(\Omega _{P/A} \otimes _ P B, N) \to \mathop{\mathrm{Hom}}\nolimits _ B(J/J^2, N)\right) \]

because $\Omega _{P/A}$ is a free module. Consider a extension $0 \to N \to B' \to B \to 0$ as in the lemma. Since $P$ is a polynomial algebra over $A$ we can lift $\alpha $ to an $A$-algebra map $\alpha ' : P' \to B'$. Then $\alpha '|_ J : J \to N$ factors as $J \to J/J^2 \to N$ as $N$ has square zero in $B'$. The lemma sends our extension to the class of this map $J/J^2 \to N$ in the displayed cokernel.

Lemma 90.2.5. Given ring maps $A \to B \to C$, a $B$-module $M$, a $C$-module $N$, a $B$-linear map $c : M \to N$, and extensions of $A$-algebras with square zero kernels

  1. $0 \to M \to B' \to B \to 0$ corresponding to $\xi \in \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, M)$, and

  2. $0 \to N \to C' \to C \to 0$ corresponding to $\zeta \in \mathop{\mathrm{Ext}}\nolimits ^1_ C(\mathop{N\! L}\nolimits _{C/A}, N)$.

See Lemma 90.2.3. Then there is an $A$-algebra map $B' \to C'$ compatible with $B \to C$ and $c$ if and only if $\xi $ and $\zeta $ map to the same element of $\mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N)$.

Proof. The stament makes sense as we have the maps

\[ \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, M) \to \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N) \]

using the map $M \to N$ and

\[ \mathop{\mathrm{Ext}}\nolimits ^1_ C(\mathop{N\! L}\nolimits _{C/A}, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{C/A}, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N) \]

where the first arrows uses the restriction map $D(C) \to D(B)$ and the second arrow uses the canonical map of complexes $\mathop{N\! L}\nolimits _{B/A} \to \mathop{N\! L}\nolimits _{C/A}$. The statement of the lemma can be deduced from Lemma 90.2.1 applied to the diagram

\[ \xymatrix{ & 0 \ar[r] & N \ar[r] & C' \ar[r] & C \ar[r] & 0 \\ & 0 \ar[r]|\hole & 0 \ar[u] \ar[r] & A \ar[u] \ar[r]|\hole & A \ar[u] \ar[r] & 0 \\ 0 \ar[r] & M \ar[ruu] \ar[r] & B' \ar[r] & B \ar[ruu] \ar[r] & 0 \\ 0 \ar[r] & 0 \ar[ruu]|\hole \ar[u] \ar[r] & A \ar[ruu]|\hole \ar[u] \ar[r] & A \ar[ruu]|\hole \ar[u] \ar[r] & 0 } \]

and a compatibility between the constructions in the proofs of Lemmas 90.2.3 and 90.2.1 whose statement and proof we omit. (See remark below for a direct argument.) $\square$

Remark 90.2.6. Let $A \to B \to C$, $M$, $N$, $c : M \to N$, $0 \to M \to B' \to B \to 0$, $\xi \in \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, M)$, $0 \to N \to C' \to C \to 0$, and $\zeta \in \mathop{\mathrm{Ext}}\nolimits ^1_ C(\mathop{N\! L}\nolimits _{C/A}, N)$ be as in Lemma 90.2.5. Using pushout along $c : M \to N$ we can construct an extension

\[ \xymatrix{ 0 \ar[r] & N \ar[r] & B'_1 \ar[r] & B \ar[r] & 0 \\ 0 \ar[r] & M \ar[u]^ c \ar[r] & B' \ar[u] \ar[r] & B \ar[u] \ar[r] & 0 } \]

by setting $B'_1 = (N \times B')/M$ where $M$ is antidiagonally embedded. Using pullback along $B \to C$ we can construct an extension

\[ \xymatrix{ 0 \ar[r] & N \ar[r] & C' \ar[r] & C \ar[r] & 0 \\ 0 \ar[r] & N \ar[u] \ar[r] & B'_2 \ar[u] \ar[r] & B \ar[u] \ar[r] & 0 } \]

by setting $B'_2 = C' \times _ C B$ (fibre product of rings). A simple diagram chase tells us that there exists an $A$-algebra map $B' \to C'$ compatible with $B \to C$ and $c$ if and only if $B'_1$ is isomorphic to $B'_2$ as $A$-algebra extensions of $B$ by $N$. Thus to see Lemma 90.2.5 is true, it suffices to show that $B'_1$ corresponds via the bijection of Lemma 90.2.3 to the image of $\xi $ by the map $\mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, M) \to \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N)$ and that $B'_2$ correspond to the image of $\zeta $ by the map $\mathop{\mathrm{Ext}}\nolimits ^1_ C(\mathop{N\! L}\nolimits _{C/A}, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N)$. The first of these two statements is immediate from the construction of the class in Remark 90.2.4. For the second, choose a commutative diagram

\[ \xymatrix{ Q \ar[r]_\beta & C \\ P \ar[u]^\varphi \ar[r]^\alpha & B \ar[u] } \]

of $A$-algebras, such that $\alpha $ is a presentation of $B$ over $A$ and $\beta $ is a presentation of $C$ over $A$. See Remark 90.2.4 and references therein. Set $J = \mathop{\mathrm{Ker}}(\alpha )$ and $K = \mathop{\mathrm{Ker}}(\beta )$. The map $\varphi $ induces a map of complexes $\mathop{N\! L}\nolimits (\alpha ) \to \mathop{N\! L}\nolimits (\beta )$ and in particular $\bar\varphi : J/J^2 \to K/K^2$. Choose $A$-algebra homomorphism $\beta ' : Q \to C'$ which is a lift of $\beta $. Then $\alpha ' = (\beta ' \circ \varphi , \alpha ) : P \to B'_2 = C' \times _ C B$ is a lift of $\alpha $. With these choices the composition of the map $K/K^2 \to N$ induced by $\beta '$ and the map $\bar\varphi : J/J^2 \to K/K^2$ is the restriction of $\alpha '$ to $J/J^2$. Unwinding the constructions of our classes in Remark 90.2.4 this indeed shows that $B'_2$ correspond to the image of $\zeta $ by the map $\mathop{\mathrm{Ext}}\nolimits ^1_ C(\mathop{N\! L}\nolimits _{C/A}, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A}, N)$.

Lemma 90.2.7. Let $0 \to I \to A' \to A \to 0$, $A \to B$, and $c : I \to N$ be as in (90.2.0.1). Denote $\xi \in \mathop{\mathrm{Ext}}\nolimits ^1_ A(\mathop{N\! L}\nolimits _{A/A'}, I)$ the element corresponding to the extension $A'$ of $A$ by $I$ via Lemma 90.2.3. The set of isomorphism classes of solutions is canonically bijective to the fibre of

\[ \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A'}, N) \to \mathop{\mathrm{Ext}}\nolimits ^1_ A(\mathop{N\! L}\nolimits _{A'/A}, N) \]

over the image of $\xi $.

Proof. By Lemma 90.2.3 applied to $A' \to B$ and the $B$-module $N$ we see that elements $\zeta $ of $\mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{B/A'}, N)$ parametrize extensions $0 \to N \to B' \to B \to 0$ of $A'$-algebras. By Lemma 90.2.5 applied to $A' \to A \to B$ and $c : I \to N$ we see that there is an $A'$-algebra map $A' \to B'$ compatible with $c$ and $A \to B$ if and only if $\zeta $ maps to $\xi $. Of course this is the same thing as saying $B'$ is a solution of (90.2.0.1). $\square$

Remark 90.2.8. Observe that in the situation of Lemma 90.2.7 we have

\[ \mathop{\mathrm{Ext}}\nolimits ^1_ A(\mathop{N\! L}\nolimits _{A'/A}, N) = \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{A'/A} \otimes _ A^\mathbf {L} B, N) = \mathop{\mathrm{Ext}}\nolimits ^1_ B(\mathop{N\! L}\nolimits _{A'/A} \otimes _ A B, N) \]

The first equality by More on Algebra, Lemma 15.60.3 and the second by More on Algebra, Lemma 15.85.1. We have maps of complexes

\[ \mathop{N\! L}\nolimits _{A'/A} \otimes _ A B \to \mathop{N\! L}\nolimits _{B/A'} \to \mathop{N\! L}\nolimits _{B/A} \]

which is close to being a distinguished triangle, see Algebra, Lemma 10.134.4. If it were a distinguished triangle we would conclude that the image of $\xi $ in $\mathop{\mathrm{Ext}}\nolimits ^2_ B(\mathop{N\! L}\nolimits _{B/A}, N)$ would be the obstruction to the existence of a solution to (90.2.0.1).

If our ring map $A \to B$ is a local complete intersection, then there is a solutuion. This is a kind of lifting result; observe that for syntomic ring maps we have proved a rather strong lifting result in Smoothing Ring Maps, Proposition 16.3.2.

Lemma 90.2.9. If $A \to B$ is a local complete intersection ring map, then there exists a solution to (90.2.0.1).

First proof. Write $B = A[x_1, \ldots , x_ n]/J$. By More on Algebra, Definition 15.33.2 the ideal $J$ is Koszul-regular. This implies $J$ is $H_1$-regular and quasi-regular, see More on Algebra, Section 15.32. Let $J' \subset A'[x_1, \ldots , x_ n]$ be the inverse image of $J$. Denote $I[x_1, \ldots , x_ n]$ the kernel of $A'[x_1, \ldots , x_ n] \to A[x_1, \ldots , x_ n]$. By More on Algebra, Lemma 15.32.5 we have $I[x_1, \ldots , x_ n] \cap (J')^2 = J'I[x_1, \ldots , x_ n] = JI[x_1, \ldots , x_ n]$. Hence we obtain a short exact sequence

\[ 0 \to I \otimes _ A B \to J'/(J')^2 \to J/J^2 \to 0 \]

Since $J/J^2$ is projective (More on Algebra, Lemma 15.32.3) we can choose a splitting of this sequence

\[ J'/(J')^2 = I \otimes _ A B \oplus J/J^2 \]

Let $(J')^2 \subset J'' \subset J'$ be the elements which map to the second summand in the decomposition above. Then

\[ 0 \to I \otimes _ A B \to A'[x_1, \ldots , x_ n]/J'' \to B \to 0 \]

is a solution to (90.2.0.1) with $N = I \otimes _ A B$. The general case is obtained by doing a pushout along the given map $I \otimes _ A B \to N$. $\square$

Second proof. Please read Remark 90.2.8 before reading this proof. By More on Algebra, Lemma 15.33.6 the maps $\mathop{N\! L}\nolimits _{A'/A} \otimes _ A B \to \mathop{N\! L}\nolimits _{B/A'} \to \mathop{N\! L}\nolimits _{B/A}$ do form a distinguished triangle in $D(B)$. Hence it suffices to show that $\mathop{\mathrm{Ext}}\nolimits ^2_{B/A}(\mathop{N\! L}\nolimits _{B/A}, N)$ vanishes. By More on Algebra, Lemma 15.85.4 the complex $\mathop{N\! L}\nolimits _{B/A}$ is perfect of tor-amplitude in $[-1, 0]$. This implies our $\mathop{\mathrm{Ext}}\nolimits ^2$ vanishes for example by More on Algebra, Lemma 15.76.1 part (1). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08S3. Beware of the difference between the letter 'O' and the digit '0'.