Theorem 98.5.12 (Algebraicity of the stack of coherent sheaves; flat case). Let $S$ be a scheme. Let $f : X \to B$ be a morphism of algebraic spaces over $S$. Assume that $f$ is of finite presentation, separated, and flat^{1}. Then $\mathcal{C}\! \mathit{oh}_{X/B}$ is an algebraic stack over $S$.

**Proof.**
Set $\mathcal{X} = \mathcal{C}\! \mathit{oh}_{X/B}$. We have seen that $\mathcal{X}$ is a stack in groupoids over $(\mathit{Sch}/S)_{fppf}$ with diagonal representable by algebraic spaces (Lemmas 98.5.4 and 98.5.3). Hence it suffices to find a scheme $W$ and a surjective and smooth morphism $W \to \mathcal{X}$.

Let $B'$ be a scheme and let $B' \to B$ be a surjective étale morphism. Set $X' = B' \times _ B X$ and denote $f' : X' \to B'$ the projection. Then $\mathcal{X}' = \mathcal{C}\! \mathit{oh}_{X'/B'}$ is equal to the $2$-fibre product of $\mathcal{X}$ with the category fibred in sets associated to $B'$ over the category fibred in sets associated to $B$ (Remark 98.5.5). By the material in Algebraic Stacks, Section 93.10 the morphism $\mathcal{X}' \to \mathcal{X}$ is surjective and étale. Hence it suffices to prove the result for $\mathcal{X}'$. In other words, we may assume $B$ is a scheme.

Assume $B$ is a scheme. In this case we may replace $S$ by $B$, see Algebraic Stacks, Section 93.19. Thus we may assume $S = B$.

Assume $S = B$. Choose an affine open covering $S = \bigcup U_ i$. Denote $\mathcal{X}_ i$ the restriction of $\mathcal{X}$ to $(\mathit{Sch}/U_ i)_{fppf}$. If we can find schemes $W_ i$ over $U_ i$ and surjective smooth morphisms $W_ i \to \mathcal{X}_ i$, then we set $W = \coprod W_ i$ and we obtain a surjective smooth morphism $W \to \mathcal{X}$. Thus we may assume $S = B$ is affine.

Assume $S = B$ is affine, say $S = \mathop{\mathrm{Spec}}(\Lambda )$. Write $\Lambda = \mathop{\mathrm{colim}}\nolimits \Lambda _ i$ as a filtered colimit with each $\Lambda _ i$ of finite type over $\mathbf{Z}$. For some $i$ we can find a morphism of algebraic spaces $X_ i \to \mathop{\mathrm{Spec}}(\Lambda _ i)$ which is of finite presentation, separated, and flat and whose base change to $\Lambda $ is $X$. See Limits of Spaces, Lemmas 69.7.1, 69.6.9, and 69.6.12. If we show that $\mathcal{C}\! \mathit{oh}_{X_ i/\mathop{\mathrm{Spec}}(\Lambda _ i)}$ is an algebraic stack, then it follows by base change (Remark 98.5.5 and Algebraic Stacks, Section 93.19) that $\mathcal{X}$ is an algebraic stack. Thus we may assume that $\Lambda $ is a finite type $\mathbf{Z}$-algebra.

Assume $S = B = \mathop{\mathrm{Spec}}(\Lambda )$ is affine of finite type over $\mathbf{Z}$. In this case we will verify conditions (1), (2), (3), (4), and (5) of Artin's Axioms, Lemma 97.17.1 to conclude that $\mathcal{X}$ is an algebraic stack. Note that $\Lambda $ is a G-ring, see More on Algebra, Proposition 15.50.12. Hence all local rings of $S$ are G-rings. Thus (5) holds. By Lemma 98.5.11 we have that $\mathcal{X}$ satisfies openness of versality, hence (4) holds. To check (2) we have to verify axioms [-1], [0], [1], [2], and [3] of Artin's Axioms, Section 97.14. We omit the verification of [-1] and axioms [0], [1], [2], [3] correspond respectively to Lemmas 98.5.4, 98.5.6, 98.5.7, 98.5.9. Condition (3) follows from Lemma 98.5.10. Finally, condition (1) is Lemma 98.5.3. This finishes the proof of the theorem. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (4)

Comment #4571 by Ariyan Javanpeykar on

Comment #4759 by Johan on

Comment #5452 by Pieter Belmans on

Comment #5671 by Johan on