Lemma 61.8.4. Let $A$ be a ring such that every faithfully flat étale ring map $A \to B$ has a retraction. Then the same is true for every quotient ring $A/I$.

**Proof.**
Let $A/I \to \overline{B}$ be faithfully flat étale. By Algebra, Lemma 10.143.10 we can write $\overline{B} = B/IB$ for some étale ring map $A \to B$. The image $U$ of $\mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)$ is open and contains $V(I)$. Hence the complement $Z = \mathop{\mathrm{Spec}}(A) \setminus U$ is quasi-compact and disjoint from $V(I)$. Hence $Z \subset D(f_1) \cup \ldots \cup D(f_ r)$ for some $r \geq 0$ and $f_ i \in I$. Then $A \to B' = B \times \prod A_{f_ i}$ is faithfully flat étale and $\overline{B} = B'/IB'$. Hence the retraction $B' \to A$ to $A \to B'$, induces a retraction to $A/I \to \overline{B}$.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: