Lemma 60.8.5. Let $A$ be a ring such that every faithfully flat étale ring map $A \to B$ has a section. Then every local ring of $A$ at a maximal ideal is strictly henselian.

**Proof.**
Let $\mathfrak m$ be a maximal ideal of $A$. Let $A \to B$ be an étale ring map and let $\mathfrak q \subset B$ be a prime lying over $\mathfrak m$. By the description of the strict henselization $A_\mathfrak m^{sh}$ in Algebra, Lemma 10.155.13 it suffices to show that $A_\mathfrak m = B_\mathfrak q$. Note that there are finitely many primes $\mathfrak q = \mathfrak q_1, \mathfrak q_2, \ldots , \mathfrak q_ n$ lying over $\mathfrak m$ and there are no specializations between them as an étale ring map is quasi-finite, see Algebra, Lemma 10.143.6. Thus $\mathfrak q_ i$ is a maximal ideal and we can find $g \in \mathfrak q_2 \cap \ldots \cap \mathfrak q_ n$, $g \not\in \mathfrak q$ (Algebra, Lemma 10.15.2). After replacing $B$ by $B_ g$ we see that $\mathfrak q$ is the only prime of $B$ lying over $\mathfrak m$. The image $U \subset \mathop{\mathrm{Spec}}(A)$ of $\mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)$ is open (Algebra, Proposition 10.41.8). Thus the complement $\mathop{\mathrm{Spec}}(A) \setminus U$ is closed and we can find $f \in A$, $f \not\in \mathfrak p$ such that $\mathop{\mathrm{Spec}}(A) = U \cup D(f)$. The ring map $A \to B \times A_ f$ is faithfully flat and étale, hence has a section $\sigma : B \times A_ f \to A$ by assumption on $A$. Observe that $\sigma $ is étale, hence flat as a map between étale $A$-algebras (Algebra, Lemma 10.143.8). Since $\mathfrak q$ is the only prime of $B \times A_ f$ lying over $A$ we find that $A_\mathfrak p \to B_\mathfrak q$ has a section which is also flat. Thus $A_\mathfrak p \to B_\mathfrak q \to A_\mathfrak p$ are flat local ring maps whose composition is the identity. Since a flat local homomorphism of local rings is injective we conclude these maps are isomorphisms as desired.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)