The Stacks project

Lemma 61.29.2. In the situation above suppose $K$ is in $D_{cons}(X, \Lambda )$ and $X$ is quasi-compact. Set $K_ n = K \otimes _\Lambda ^\mathbf {L} \underline{\Lambda /I^ n}$. There exist $a, b$ such that

  1. $K = R\mathop{\mathrm{lim}}\nolimits K_ n$ and $H^ i(K) = 0$ for $i \not\in [a, b]$,

  2. each $K_ n$ has tor amplitude in $[a, b]$,

  3. each $K_ n$ has constructible cohomology sheaves,

  4. each $K_ n = \epsilon ^{-1}L_ n$ for some $L_ n \in D_{ctf}(X_{\acute{e}tale}, \Lambda /I^ n)$ (√Čtale Cohomology, Definition 59.77.1).

Proof. By definition of local having finite tor dimension, we can find $a, b$ such that $K_1$ has tor amplitude in $[a, b]$. Part (2) follows from Cohomology on Sites, Lemma 21.46.9. Then (1) follows as $K$ is derived complete by the description of limits in Cohomology on Sites, Proposition 21.51.2 and the fact that $H^ b(K_{n + 1}) \to H^ b(K_ n)$ is surjective as $K_ n = K_{n + 1} \otimes ^\mathbf {L}_\Lambda \underline{\Lambda /I^ n}$. Part (3) follows from Lemma 61.27.6, Part (4) follows from Lemma 61.27.4 and the fact that $L_ n$ has finite tor dimension because $K_ n$ does (small argument omitted). $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09C2. Beware of the difference between the letter 'O' and the digit '0'.