Loading web-font TeX/Math/Italic

The Stacks project

Lemma 61.29.6. Let X be a connected scheme. Let \Lambda be a Noetherian ring and let I \subset \Lambda be an ideal. If K is in D_{cons}(X, \Lambda ) such that K \otimes _\Lambda \underline{\Lambda /I} has locally constant cohomology sheaves, then K is adic lisse (Definition 61.29.4).

Proof. Write K_ n = K \otimes _\Lambda ^\mathbf {L} \underline{\Lambda /I^ n}. We will use the results of Lemma 61.29.2 without further mention. By Cohomology on Sites, Lemma 21.53.5 we see that K_ n has locally constant cohomology sheaves for all n. We have K_ n = \epsilon ^{-1}L_ n some L_ n in D_{ctf}(X_{\acute{e}tale}, \Lambda /I^ n) with locally constant cohomology sheaves. By Étale Cohomology, Lemma 59.77.7 there exist perfect M_ n \in D(\Lambda /I^ n) such that L_ n is étale locally isomorphic to \underline{M_ n}. The maps L_{n + 1} \to L_ n corresponding to K_{n + 1} \to K_ n induces isomorphisms L_{n + 1} \otimes _{\Lambda /I^{n + 1}}^\mathbf {L} \underline{\Lambda /I^ n} \to L_ n. Looking locally on X we conclude that there exist maps M_{n + 1} \to M_ n in D(\Lambda /I^{n + 1}) inducing isomorphisms M_{n + 1} \otimes _{\Lambda /I^{n + 1}} \Lambda /I^ n \to M_ n, see Cohomology on Sites, Lemma 21.53.3. Fix a choice of such maps. By More on Algebra, Lemma 15.97.4 we can find a finite complex M^\bullet of finite projective \Lambda ^\wedge -modules and isomorphisms M^\bullet /I^ nM^\bullet \to M_ n in D(\Lambda /I^ n) compatible with the transition maps. To finish the proof we will show that K is locally isomorphic to

\underline{M^\bullet }^\wedge = \mathop{\mathrm{lim}}\nolimits \underline{M^\bullet /I^ nM^\bullet } = R\mathop{\mathrm{lim}}\nolimits \underline{M^\bullet /I^ nM^\bullet }

Let E^\bullet be the dual complex to M^\bullet , see More on Algebra, Lemma 15.74.15 and its proof. Consider the objects

H_ n = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\Lambda /I^ n}(\underline{M^\bullet /I^ nM^\bullet }, K_ n) = \underline{E^\bullet /I^ nE^\bullet } \otimes _{\Lambda /I^ n}^\mathbf {L} K_ n

of D(X_{pro\text{-}\acute{e}tale}, \Lambda /I^ n). Modding out by I^ n defines a transition map H_{n + 1} \to H_ n. Set H = R\mathop{\mathrm{lim}}\nolimits H_ n. Then H is an object of D_{cons}(X, \Lambda ) (details omitted) with H \otimes _\Lambda ^\mathbf {L} \underline{\Lambda /I^ n} = H_ n. Choose a covering \{ W_ t \to X\} _{t \in T} with each W_ t affine and weakly contractible. By our choice of M^\bullet we see that

\begin{align*} H_ n|_{W_ t} & \cong R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\Lambda /I^ n}(\underline{M^\bullet /I^ nM^\bullet }, \underline{M^\bullet /I^ nM^\bullet }) \\ & = \underline{ \text{Tot}(E^\bullet /I^ nE^\bullet \otimes _{\Lambda /I^ n} M^\bullet /I^ nM^\bullet ) } \end{align*}

Thus we may apply Lemma 61.29.5 to H = R\mathop{\mathrm{lim}}\nolimits H_ n. We conclude the system H^0(W_ t, H_ n) satisfies Mittag-Leffler. Since for all n \gg 1 there is an element of H^0(W_ t, H_ n) which maps to an isomorphism in

H^0(W_ t, H_1) = \mathop{\mathrm{Hom}}\nolimits (\underline{M^\bullet /IM^\bullet }, K_1)

we find an element (\varphi _{t, n}) in the inverse limit which produces an isomorphism mod I. Then

R\mathop{\mathrm{lim}}\nolimits \varphi _{t, n} : \underline{M^\bullet }^\wedge |_{W_ t} = R\mathop{\mathrm{lim}}\nolimits \underline{M^\bullet /I^ nM^\bullet }|_{W_ t} \longrightarrow R\mathop{\mathrm{lim}}\nolimits K_ n|_{W_ t} = K|_{W_ t}

is an isomorphism. This finishes the proof. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.