Lemma 36.29.2. In Situation 36.29.1. Let E_0 and K_0 be objects of D(\mathcal{O}_{S_0}). Set E_ i = Lf_{i0}^*E_0 and K_ i = Lf_{i0}^*K_0 for i \geq 0 and set E = Lf_0^*E_0 and K = Lf_0^*K_0. Then the map
\mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_{S_ i})}(E_ i, K_ i) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ S)}(E, K)
is an isomorphism if either
E_0 is perfect and K_0 \in D_\mathit{QCoh}(\mathcal{O}_{S_0}), or
E_0 is pseudo-coherent and K_0 \in D_\mathit{QCoh}(\mathcal{O}_{S_0}) has finite tor dimension.
Proof.
For every open U_0 \subset S_0 consider the condition P that the canonical map
\mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_{U_ i})}(E_ i|_{U_ i}, K_ i|_{U_ i}) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(E|_ U, K|_ U)
is an isomorphism, where U = f_0^{-1}(U_0) and U_ i = f_{i0}^{-1}(U_0). We will prove P holds for all quasi-compact opens U_0 by the induction principle of Cohomology of Schemes, Lemma 30.4.1. Condition (2) of this lemma follows immediately from Mayer-Vietoris for hom in the derived category, see Cohomology, Lemma 20.33.3. Thus it suffices to prove the lemma when S_0 is affine.
Assume S_0 is affine. Say S_0 = \mathop{\mathrm{Spec}}(A_0), S_ i = \mathop{\mathrm{Spec}}(A_ i), and S = \mathop{\mathrm{Spec}}(A). We will use Lemma 36.3.5 without further mention.
In case (1) the object E_0^\bullet corresponds to a finite complex of finite projective A_0-modules, see Lemma 36.10.7. We may represent the object K_0 by a K-flat complex K_0^\bullet of A_0-modules. In this situation we are trying to prove
\mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{D(A_ i)}(E_0^\bullet \otimes _{A_0} A_ i, K_0^\bullet \otimes _{A_0} A_ i) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(A)}(E_0^\bullet \otimes _{A_0} A, K_0^\bullet \otimes _{A_0} A)
Because E_0^\bullet is a bounded above complex of projective modules we can rewrite this as
\mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{K(A_0)}(E_0^\bullet , K_0^\bullet \otimes _{A_0} A_ i) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{K(A_0)}(E_0^\bullet , K_0^\bullet \otimes _{A_0} A)
Since there are only a finite number of nonzero modules E_0^ n and since these are all finitely presented modules, this map is an isomorphism.
In case (2) the object E_0 corresponds to a bounded above complex E_0^\bullet of finite free A_0-modules, see Lemma 36.10.2. We may represent K_0 by a finite complex K_0^\bullet of flat A_0-modules, see Lemma 36.10.4 and More on Algebra, Lemma 15.67.3. In particular K_0^\bullet is K-flat and we can argue as before to arrive at the map
\mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{K(A_0)}(E_0^\bullet , K_0^\bullet \otimes _{A_0} A_ i) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{K(A_0)}(E_0^\bullet , K_0^\bullet \otimes _{A_0} A)
It is clear that this map is an isomorphism (only a finite number of terms are involved since K_0^\bullet is bounded).
\square
Comments (0)