Lemma 36.8.1. Let X be a Noetherian scheme. Let \mathcal{J} be an injective object of \mathit{QCoh}(\mathcal{O}_ X). Then \mathcal{J} is a flasque sheaf of \mathcal{O}_ X-modules.
Proof. Let U \subset X be an open subset and let s \in \mathcal{J}(U) be a section. Let \mathcal{I} \subset \mathcal{O}_ X be the quasi-coherent sheaf of ideals defining the reduced induced scheme structure on X \setminus U (see Schemes, Definition 26.12.5). By Cohomology of Schemes, Lemma 30.10.5 the section s corresponds to a map \sigma : \mathcal{I}^ n \to \mathcal{J} for some n. As \mathcal{J} is an injective object of \mathit{QCoh}(\mathcal{O}_ X) we can extend \sigma to a map \tilde s : \mathcal{O}_ X \to \mathcal{J}. Then \tilde s corresponds to a global section of \mathcal{J} restricting to s. \square
Comments (2)
Comment #7491 by Xiaolong Liu on
Comment #7637 by Stacks Project on