Lemma 36.8.2. Let $f : X \to Y$ be a morphism of Noetherian schemes. Then $f_*$ on quasi-coherent sheaves has a right derived extension $\Phi : D(\mathit{QCoh}(\mathcal{O}_ X)) \to D(\mathit{QCoh}(\mathcal{O}_ Y))$ such that the diagram
commutes.
Lemma 36.8.2. Let $f : X \to Y$ be a morphism of Noetherian schemes. Then $f_*$ on quasi-coherent sheaves has a right derived extension $\Phi : D(\mathit{QCoh}(\mathcal{O}_ X)) \to D(\mathit{QCoh}(\mathcal{O}_ Y))$ such that the diagram
commutes.
Proof. Since $X$ and $Y$ are Noetherian schemes the morphism is quasi-compact and quasi-separated (see Properties, Lemma 28.5.4 and Schemes, Remark 26.21.18). Thus $f_*$ preserve quasi-coherence, see Schemes, Lemma 26.24.1. Next, let $K$ be an object of $D(\mathit{QCoh}(\mathcal{O}_ X))$. Since $\mathit{QCoh}(\mathcal{O}_ X)$ is a Grothendieck abelian category (Properties, Proposition 28.23.4), we can represent $K$ by a K-injective complex $\mathcal{I}^\bullet $ such that each $\mathcal{I}^ n$ is an injective object of $\mathit{QCoh}(\mathcal{O}_ X)$, see Injectives, Theorem 19.12.6. Thus we see that the functor $\Phi $ is defined by setting
where the right hand side is viewed as an object of $D(\mathit{QCoh}(\mathcal{O}_ Y))$. To finish the proof of the lemma it suffices to show that the canonical map
is an isomorphism in $D(\mathcal{O}_ Y)$. To see this by Lemma 36.4.2 it suffices to show that $\mathcal{I}^ n$ is right $f_*$-acyclic for all $n \in \mathbf{Z}$. This is true because $\mathcal{I}^ n$ is flasque by Lemma 36.8.1 and flasque modules are right $f_*$-acyclic by Cohomology, Lemma 20.12.5. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8132 by Dennis Eriksson on
Comment #8229 by Stacks Project on