The Stacks project

70.16 Finite cover by a scheme

As an application of the limit results of this chapter, we prove that given any quasi-compact and quasi-separated algebraic space $X$, there is a scheme $Y$ and a surjective, finite morphism $Y \to X$. We will rely on the already proven result that we can find a finite integral cover by a scheme, which was proved in Decent Spaces, Section 68.9.

Proposition 70.16.1. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$.

  1. There exists a surjective finite morphism $Y \to X$ of finite presentation where $Y$ is a scheme,

  2. given a surjective étale morphism $U \to X$ we may choose $Y \to X$ such that for every $y \in Y$ there is an open neighbourhood $V \subset Y$ such that $V \to X$ factors through $U$.

Proof. Part (1) is the special case of (2) with $U = X$. Let $Y \to X$ be as in Decent Spaces, Lemma 68.9.2. Choose a finite affine open covering $Y = \bigcup V_ j$ such that $V_ j \to X$ factors through $U$. We can write $Y = \mathop{\mathrm{lim}}\nolimits Y_ i$ with $Y_ i \to X$ finite and of finite presentation, see Lemma 70.11.2. For large enough $i$ the algebraic space $Y_ i$ is a scheme, see Lemma 70.5.11. For large enough $i$ we can find affine opens $V_{i, j} \subset Y_ i$ whose inverse image in $Y$ recovers $V_ j$, see Lemma 70.5.7. For even larger $i$ the morphisms $V_ j \to U$ over $X$ come from morphisms $V_{i, j} \to U$ over $X$, see Proposition 70.3.10. This finishes the proof. $\square$

Lemma 70.16.2. Let $S$ be a scheme. Let $f : X \to Y$ be an integral morphism of algebraic spaces over $S$. Assume $Y$ quasi-compact and quasi-separated. Let $V \subset Y$ be a quasi-compact open subspace such that $f^{-1}(V) \to V$ is finite and of finite presentation. Then $X$ can be written as a directed limit $X = \mathop{\mathrm{lim}}\nolimits X_ i$ where $f_ i : X_ i \to Y$ are finite and of finite presentation such that $f^{-1}(V) \to f_ i^{-1}(V)$ is an isomorphism for all $i$.

Proof. This lemma is a slight refinement of Proposition 70.16.1. Consider the integral quasi-coherent $\mathcal{O}_ Y$-algebra $\mathcal{A} = f_*\mathcal{O}_ X$. In the next paragraph, we will write $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i$ as a directed colimit of finite and finitely presented $\mathcal{O}_ Y$-algebras $\mathcal{A}_ i$ such that $\mathcal{A}_ i|_ V = \mathcal{A}|_ V$. Having done this we set $X_ i = \underline{\mathop{\mathrm{Spec}}}_ Y(\mathcal{A}_ i)$, see Morphisms of Spaces, Definition 67.20.8. By construction $X_ i \to Y$ is finite and of finite presentation, $X = \mathop{\mathrm{lim}}\nolimits X_ i$, and $f_ i^{-1}(V) = f^{-1}(V)$.

The proof of the assertion on algebras is similar to the proof of part (2) of Lemma 70.9.7. First, write $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ as a colimit of finitely presented $\mathcal{O}_ Y$-modules using Lemma 70.9.1. Since $\mathcal{A}|_ V$ is a finite type $\mathcal{O}_ V$-module we may and do assume that $\mathcal{F}_ i|_ V \to \mathcal{A}|_ V$ is surjective for all $i$. For each $i$, let $\mathcal{J}_ i$ be the kernel of the map

\[ \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i) \longrightarrow \mathcal{A} \]

For $i' \geq i$ there is an induced map $\mathcal{J}_ i \to \mathcal{J}_{i'}$. We have $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/\mathcal{J}_ i$. Moreover, the quasi-coherent $\mathcal{O}_ X$-algebras $\text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/\mathcal{J}_ i$ are finite (as finite type quasi-coherent subalgebras of the integral quasi-coherent $\mathcal{O}_ Y$-algebra $\mathcal{A}$ over $\mathcal{O}_ X$). The restriction of $\text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/\mathcal{J}_ i$ to $V$ is $\mathcal{A}|_ V$ by the surjectivity above. Hence $\mathcal{J}_ i|_ V$ is finitely generated as an ideal sheaf of $\text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)|_ V$ due to the fact that $\mathcal{A}|_ V$ is finitely presented as an $\mathcal{O}_ Y$-algebra. Write $\mathcal{J}_ i = \mathop{\mathrm{colim}}\nolimits \mathcal{E}_{ik}$ as a colimit of finitely presented $\mathcal{O}_ X$-modules. We may and do assume that $\mathcal{E}_{ik}|_ V$ generates $\mathcal{J}_ i|_ V$ as a sheaf of ideal of $\text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)|_ V$ by the statement on finite generation above. Given $i' \geq i$ and $k$ there exists a $k'$ such that we have a map $\mathcal{E}_{ik} \to \mathcal{E}_{i'k'}$ making

\[ \xymatrix{ \mathcal{J}_ i \ar[r] & \mathcal{J}_{i'} \\ \mathcal{E}_{ik} \ar[u] \ar[r] & \mathcal{E}_{i'k'} \ar[u] } \]

commute. This follows from Cohomology of Spaces, Lemma 69.5.3. This induces a map

\[ \mathcal{A}_{ik} = \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/(\mathcal{E}_{ik}) \longrightarrow \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_{i'})/(\mathcal{E}_{i'k'}) = \mathcal{A}_{i'k'} \]

where $(\mathcal{E}_{ik})$ denotes the ideal generated by $\mathcal{E}_{ik}$. The quasi-coherent $\mathcal{O}_ X$-algebras $\mathcal{A}_{ki}$ are of finite presentation and finite for $k$ large enough (see proof of Lemma 70.9.6). Moreover we have $\mathcal{A}_{ik}|_ V = \mathcal{A}|_ V$ by construction. Finally, we have

\[ \mathop{\mathrm{colim}}\nolimits \mathcal{A}_{ik} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i = \mathcal{A} \]

Namely, the first equality was shown in the proof of Lemma 70.9.6 and the second equality because $\mathcal{A}$ is the colimit of the modules $\mathcal{F}_ i$. $\square$

Lemma 70.16.3. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$ such that $|X|$ has finitely many irreducible components.

  1. There exists a surjective finite morphism $f : Y \to X$ of finite presentation where $Y$ is a scheme such that $f$ is finite étale over a quasi-compact dense open $U \subset X$,

  2. given a surjective étale morphism $V \to X$ we may choose $Y \to X$ such that for every $y \in Y$ there is an open neighbourhood $W \subset Y$ such that $W \to X$ factors through $V$.

Proof. Part (1) is the special case of (2) with $V = X$.

Proof of (2). Let $\pi : Y \to X$ be as in Decent Spaces, Lemma 68.9.3 and let $U \subset X$ be a quasi-compact dense open such that $\pi ^{-1}(U) \to U$ is finite étale. Choose a finite affine open covering $Y = \bigcup W_ j$ such that $W_ j \to X$ factors through $V$. We can write $Y = \mathop{\mathrm{lim}}\nolimits Y_ i$ with $\pi _ i : Y_ i \to X$ finite and of finite presentation such that $\pi ^{-1}(U) \to \pi _ i^{-1}(U)$ is an isomorphism, see Lemma 70.16.2. For large enough $i$ the algebraic space $Y_ i$ is a scheme, see Lemma 70.5.11. For large enough $i$ we can find affine opens $W_{i, j} \subset Y_ i$ whose inverse image in $Y$ recovers $W_ j$, see Lemma 70.5.7. For even larger $i$ the morphisms $W_ j \to V$ over $X$ come from morphisms $W_{i, j} \to U$ over $X$, see Proposition 70.3.10. This finishes the proof. $\square$

Lemma 70.16.4. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. There exists a $t \geq 0$ and closed subspaces

\[ X \supset Z_0 \supset Z_1 \supset \ldots \supset Z_ t = \emptyset \]

such that $Z_ i \to X$ is of finite presentation, $Z_0 \subset X$ is a thickening, and for each $i = 0, \ldots t - 1$ there exists a scheme $Y_ i$, a surjective, finite, and finitely presented morphism $Y_ i \to Z_ i$ which is finite étale over $Z_ i \setminus Z_{i + 1}$.

Proof. We may view $X$ as an algebraic space over $\mathop{\mathrm{Spec}}(\mathbf{Z})$, see Spaces, Definition 65.16.2 and Properties of Spaces, Definition 66.3.1. Thus we may apply Proposition 70.8.1. It follows that we can find an affine morphism $X \to X_0$ with $X_0$ of finite presentation over $\mathbf{Z}$. If we can prove the lemma for $X_0$, then we can pull back the stratification and the morphisms to $X$ and get the result for $X$; some details omitted. This reduces us to the case discussed in the next paragraph.

Assume $X$ is of finite presentation over $\mathbf{Z}$. Then $X$ is Noetherian and $|X|$ is a Noetherian topological space (with finitely many irreducible components) of finite dimension. Hence we may use induction on $\dim (|X|)$. Any finite morphism towards $X$ is of finite presentation, so we can ignore that requirement in the rest of the proof. By Lemma 70.16.3 there exists a surjective finite morphism $Y \to X$ which is finite étale over a dense open $U \subset X$. Set $Z_0 = X$ and let $Z_1 \subset X$ be the reduced closed subspace with $|Z_1| = |X| \setminus |U|$. By induction we find an integer $t \geq 0$ and a filtration

\[ Z_1 \supset Z_{1, 0} \supset Z_{1, 1} \supset \ldots \supset Z_{1, t} = \emptyset \]

by closed subspaces, where $Z_{1, 0} \to Z_1$ is a thickening and there exist finite surjective morphisms $Y_{1, i} \to Z_{1, i}$ which are finite étale over $Z_{1, i} \setminus Z_{1, i + 1}$. Since $Z_1$ is reduced, we have $Z_1 = Z_{1, 0}$. Hence we can set $Z_ i = Z_{1, i - 1}$ and $Y_ i = Y_{1, i - 1}$ for $i \geq 1$ and the lemma is proved. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ACX. Beware of the difference between the letter 'O' and the digit '0'.