Lemma 66.9.1. Let $S$ be a scheme. Let $j : V \to Y$ be a quasi-compact open immersion of algebraic spaces over $S$. Let $\pi : Z \to V$ be an integral morphism. Then there exists an integral morphism $\nu : Y' \to Y$ such that $Z$ is $V$-isomorphic to the inverse image of $V$ in $Y'$.

## 66.9 Integral cover by a scheme

Here we prove that given any quasi-compact and quasi-separated algebraic space $X$, there is a scheme $Y$ and a surjective, integral morphism $Y \to X$. After we develop some theory about limits of algebraic spaces, we will prove that one can do this with a finite morphism, see Limits of Spaces, Section 68.16.

**Proof.**
Since both $j$ and $\pi $ are quasi-compact and separated, so is $j \circ \pi $. Let $\nu : Y' \to Y$ be the normalization of $Y$ in $Z$, see Morphisms of Spaces, Section 65.48. Of course $\nu $ is integral, see Morphisms of Spaces, Lemma 65.48.5. The final statement follows formally from Morphisms of Spaces, Lemmas 65.48.4 and 65.48.10.
$\square$

Lemma 66.9.2. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$.

There exists a surjective integral morphism $Y \to X$ where $Y$ is a scheme,

given a surjective étale morphism $U \to X$ we may choose $Y \to X$ such that for every $y \in Y$ there is an open neighbourhood $V \subset Y$ such that $V \to X$ factors through $U$.

**Proof.**
Part (1) is the special case of part (2) where $U = X$. Choose a surjective étale morphism $U' \to U$ where $U'$ is a scheme. It is clear that we may replace $U$ by $U'$ and hence we may assume $U$ is a scheme. Since $X$ is quasi-compact, there exist finitely many affine opens $U_ i \subset U$ such that $U' = \coprod U_ i \to X$ is surjective. After replacing $U$ by $U'$ again, we see that we may assume $U$ is affine. Since $X$ is quasi-separated, hence reasonable, there exists an integer $d$ bounding the degree of the geometric fibres of $U \to X$ (see Lemma 66.5.1). We will prove the lemma by induction on $d$ for all quasi-compact and separated schemes $U$ mapping surjective and étale onto $X$. If $d = 1$, then $U = X$ and the result holds with $Y = U$. Assume $d > 1$.

We apply Morphisms of Spaces, Lemma 65.52.2 and we obtain a factorization

with $\pi $ integral and $j$ a quasi-compact open immersion. We may and do assume that $j(U)$ is scheme theoretically dense in $Y$. Note that

where the first summand is the image of $U \to U \times _ X Y$ (which is closed by Morphisms of Spaces, Lemma 65.4.6 and open because it is étale as a morphism between algebraic spaces étale over $Y$) and the second summand is the (open and closed) complement. The image $V \subset Y$ of $W$ is an open subspace containing $Y \setminus U$.

The étale morphism $W \to Y$ has geometric fibres of cardinality $< d$. Namely, this is clear for geometric points of $U \subset Y$ by inspection. Since $|U| \subset |Y|$ is dense, it holds for all geometric points of $Y$ by Lemma 66.8.1 (the degree of the fibres of a quasi-compact étale morphism does not go up under specialization). Thus we may apply the induction hypothesis to $W \to V$ and find a surjective integral morphism $Z \to V$ with $Z$ a scheme, which Zariski locally factors through $W$. Choose a factorization $Z \to Z' \to Y$ with $Z' \to Y$ integral and $Z \to Z'$ open immersion (Lemma 66.9.1). After replacing $Z'$ by the scheme theoretic closure of $Z$ in $Z'$ we may assume that $Z$ is scheme theoretically dense in $Z'$. After doing this we have $Z' \times _ Y V = Z$. Finally, let $T \subset Y$ be the induced closed subspace structure on $Y \setminus V$. Consider the morphism

This is a surjective integral morphism by construction. Since $T \subset U$ it is clear that the morphism $T \to X$ factors through $U$. On the other hand, let $z \in Z'$ be a point. If $z \not\in Z$, then $z$ maps to a point of $Y \setminus V \subset U$ and we find a neighbourhood of $z$ on which the morphism factors through $U$. If $z \in Z$, then we have an open neighbourhood of $z$ in $Z$ (which is also an open neighbourhood of $z$ in $Z'$) which factors through $W \subset U \times _ X Y$ and hence through $U$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)