Remark 12.21.5 (Variant). Let $\mathcal{A}$ be an abelian category. Let $S, T : \mathcal{A} \to \mathcal{A}$ be shift functors, i.e., isomorphisms of categories. We will indicate the $n$-fold compositions by $S^ nA$ and $T^ nA$ for $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ and $n \in \mathbf{Z}$. In this situation an exact couple is a datum $(A, E, \alpha , f, g)$ where $A$, $E$ are objects of $\mathcal{A}$ and $\alpha : A \to T^{-1}A$, $f : E \to A$, $g : A \to SE$ are morphisms such that
is an exact complex. Let's visualize this as follows
We set $d = g \circ f : E \to SE$. Then $d \circ S^{-1}d = g \circ f \circ S^{-1}g \circ S^{-1}f = 0$ because $f \circ S^{-1}g = 0$. Set $E' = \mathop{\mathrm{Ker}}(d)/\mathop{\mathrm{Im}}(S^{-1}d)$. Set $A' = \mathop{\mathrm{Im}}(T\alpha )$. Let $\alpha ' : A' \to T^{-1}A'$ induced by $\alpha $. Let $f' : E' \to A'$ be induced by $f$ which works because $f(\mathop{\mathrm{Ker}}(d)) \subset \mathop{\mathrm{Ker}}(g) = \mathop{\mathrm{Im}}(T\alpha )$. Finally, let $g' : A' \to TSE'$ induced by “$Tg \circ (T\alpha )^{-1}$”1.
In exactly the same way as above we find
$\mathop{\mathrm{Ker}}(d) = f^{-1}(\mathop{\mathrm{Ker}}(g)) = f^{-1}(\mathop{\mathrm{Im}}(T\alpha ))$,
$\mathop{\mathrm{Im}}(d) = g(\mathop{\mathrm{Im}}(f)) = g(\mathop{\mathrm{Ker}}(\alpha ))$,
$(A', E', \alpha ', f', g')$ is an exact couple for the shift functors $TS$ and $T$.
We obtain a spectral sequence (as in Remark 12.20.3) with $E_1 = E$, $E_2 = E'$, etc, with $d_ r : E_ r \to T^{r - 1}SE_ r$ for all $r \geq 1$. Lemma 12.21.4 tells us that
and
in this situation. The description of the map $d_{r + 1}$ is similar to that given in the lemma. (It may be easier to use these explicit descriptions to prove one gets a spectral sequence from such an exact couple.)
Comments (2)
Comment #9481 by Elías Guisado on
Comment #9482 by Elías Guisado on
There are also: