The Stacks project

Remark 12.18.5 (Variant). Let $\mathcal{A}$ be an abelian category. Let $S, T : \mathcal{A} \to \mathcal{A}$ be shift functors, i.e., isomorphisms of categories. We will indicate the $n$-fold compositions by $S^ nA$ and $T^ nA$ for $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ and $n \in \mathbf{Z}$. In this situation an exact couple is a datum $(A, E, \alpha , f, g)$ where $A$, $E$ are objects of $\mathcal{A}$ and $\alpha : A \to T^{-1}A$, $f : E \to A$, $g : A \to SE$ are morphisms such that

\[ \xymatrix{ TE \ar[r]^-{Tf} & TA \ar[r]^-{T\alpha } & A \ar[r]^-{g} & SE \ar[r]^{Sf} & SA } \]

is an exact complex. Let's visualize this as follows

\[ \xymatrix{ TA \ar[rrr]_{T\alpha } & & & A \ar[ld]^ g \ar[rrr]_\alpha & & & T^{-1}A \ar[ld]^{T^{-1}g} \\ & TE \ar[lu]^{Tf} \ar@{..}[r] & SE & & E \ar[lu]^ f \ar@{..}[r] & T^{-1}SE } \]

We set $d = g \circ f : E \to SE$. Then $d \circ S^{-1}d = g \circ f \circ S^{-1}g \circ S^{-1}f = 0$ because $f \circ S^{-1}g = 0$. Set $E' = \mathop{\mathrm{Ker}}(d)/\mathop{\mathrm{Im}}(S^{-1}d)$. Set $A' = \mathop{\mathrm{Im}}(T\alpha )$. Let $\alpha ' : A' \to T^{-1}A'$ induced by $\alpha $. Let $f' : E' \to A'$ be induced by $f$ which works because $f(\mathop{\mathrm{Ker}}(d)) \subset \mathop{\mathrm{Ker}}(g) = \mathop{\mathrm{Im}}(T\alpha )$. Finally, let $g' : A' \to TSE'$ induced by “$Tg \circ (T\alpha )^{-1}$”1.

In exactly the same way as above we find

  1. $\mathop{\mathrm{Ker}}(d) = f^{-1}(\mathop{\mathrm{Ker}}(g)) = f^{-1}(\mathop{\mathrm{Im}}(T\alpha ))$,

  2. $\mathop{\mathrm{Im}}(d) = g(\mathop{\mathrm{Im}}(f)) = g(\mathop{\mathrm{Ker}}(\alpha ))$,

  3. $(A', E', \alpha ', f', g')$ is an exact couple for the shift functors $TS$ and $T$.

We obtain a spectral sequence (as in Remark 12.17.3) with $E_1 = E$, $E_2 = E'$, etc, with $d_ r : E_ r \to T^{r - 1}SE_ r$ for all $r \geq 1$. Lemma 12.18.4 tells us that

\[ SB_{r + 1} = g(\mathop{\mathrm{Ker}}(T^{-r + 1}\alpha \circ \ldots \circ T^{-1}\alpha \circ \alpha )) \]

and

\[ Z_{r + 1} = f^{-1}(\mathop{\mathrm{Im}}(T\alpha \circ T^2\alpha \circ \ldots \circ T^ r\alpha )) \]

in this situation. The description of the map $d_{r + 1}$ is similar to that given in the lemma. (It may be easier to use these explicit descriptions to prove one gets a spectral sequence from such an exact couple.)

[1] This works because $TSE' = \mathop{\mathrm{Ker}}(TSd)/\mathop{\mathrm{Im}}(Td)$ and $Tg(\mathop{\mathrm{Ker}}(T\alpha )) = Tg(\mathop{\mathrm{Im}}(Tf)) = \mathop{\mathrm{Im}}(T(d))$ and $TS(d)(\mathop{\mathrm{Im}}(Tg)) = \mathop{\mathrm{Im}}(TSg \circ TSf \circ Tg) = 0$.

Comments (0)

There are also:

  • 3 comment(s) on Section 12.18: Spectral sequences: exact couples

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AMJ. Beware of the difference between the letter 'O' and the digit '0'.