The Stacks project

33.15 Change of fields and ample invertible sheaves

The following result is typical for the results in this section.

Lemma 33.15.1. Let $k$ be a field. Let $X$ be a scheme over $k$. If there exists an ample invertible sheaf on $X_ K$ for some field extension $k \subset K$, then $X$ has an ample invertible sheaf.

Proof. Let $k \subset K$ be a field extension such that $X_ K$ has an ample invertible sheaf $\mathcal{L}$. The morphism $X_ K \to X$ is surjective. Hence $X$ is quasi-compact as the image of a quasi-compact scheme (Properties, Definition 28.26.1). Since $X_ K$ is quasi-separated (by Properties, Lemma 28.26.7) we see that $X$ is quasi-separated: If $U, V \subset X$ are affine open, then $(U \cap V)_ K = U_ K \cap V_ K$ is quasi-compact and $(U \cap V)_ K \to U \cap V$ is surjective. Thus Schemes, Lemma 26.21.6 applies.

Write $K = \mathop{\mathrm{colim}}\nolimits A_ i$ as the colimit of the subalgebras of $K$ which are of finite type over $k$. Denote $X_ i = X \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(A_ i)$. Since $X_ K = \mathop{\mathrm{lim}}\nolimits X_ i$ we find an $i$ and an invertible sheaf' $\mathcal{L}_ i$ on $X_ i$ whose pullback to $X_ K$ is $\mathcal{L}$ (Limits, Lemma 32.10.3; here and below we use that $X$ is quasi-compact and quasi-separated as just shown). By Limits, Lemma 32.4.15 we may assume $\mathcal{L}_ i$ is ample after possibly increasing $i$. Fix such an $i$ and let $\mathfrak m \subset A_ i$ be a maximal ideal. By the Hilbert Nullstellensatz (Algebra, Theorem 10.34.1) the residue field $k' = A_ i/\mathfrak m$ is a finite extension of $k$. Hence $X_{k'} \subset X_ i$ is a closed subscheme hence has an ample invertible sheaf (Properties, Lemma 28.26.3). Since $X_{k'} \to X$ is finite locally free we conclude that $X$ has an ample invertible sheaf by Divisors, Proposition 31.17.9. $\square$

Lemma 33.15.2. Let $k$ be a field. Let $X$ be a scheme over $k$. If $X_ K$ is quasi-affine for some field extension $k \subset K$, then $X$ is quasi-affine.

Proof. Let $k \subset K$ be a field extension such that $X_ K$ is quasi-affine. The morphism $X_ K \to X$ is surjective. Hence $X$ is quasi-compact as the image of a quasi-compact scheme (Properties, Definition 28.18.1). Since $X_ K$ is quasi-separated (as an open subscheme of an affine scheme) we see that $X$ is quasi-separated: If $U, V \subset X$ are affine open, then $(U \cap V)_ K = U_ K \cap V_ K$ is quasi-compact and $(U \cap V)_ K \to U \cap V$ is surjective. Thus Schemes, Lemma 26.21.6 applies.

Write $K = \mathop{\mathrm{colim}}\nolimits A_ i$ as the colimit of the subalgebras of $K$ which are of finite type over $k$. Denote $X_ i = X \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(A_ i)$. Since $X_ K = \mathop{\mathrm{lim}}\nolimits X_ i$ we find an $i$ such that $X_ i$ is quasi-affine (Limits, Lemma 32.4.12; here we use that $X$ is quasi-compact and quasi-separated as just shown). By the Hilbert Nullstellensatz (Algebra, Theorem 10.34.1) the residue field $k' = A_ i/\mathfrak m$ is a finite extension of $k$. Hence $X_{k'} \subset X_ i$ is a closed subscheme hence is quasi-affine (Properties, Lemma 28.27.2). Since $X_{k'} \to X$ is finite locally free we conclude by Divisors, Lemma 31.17.10. $\square$

Lemma 33.15.3. Let $k$ be a field. Let $X$ be a scheme over $k$. If $X_ K$ is quasi-projective over $K$ for some field extension $k \subset K$, then $X$ is quasi-projective over $k$.

Proof. By definition a morphism of schemes $g : Y \to T$ is quasi-projective if it is locally of finite type, quasi-compact, and there exists a $g$-ample invertible sheaf on $Y$. Let $k \subset K$ be a field extension such that $X_ K$ is quasi-projective over $K$. Let $\mathop{\mathrm{Spec}}(A) \subset X$ be an affine open. Then $U_ K$ is an affine open subscheme of $X_ K$, hence $A_ K$ is a $K$-algebra of finite type. Then $A$ is a $k$-algebra of finite type by Algebra, Lemma 10.126.1. Hence $X \to \mathop{\mathrm{Spec}}(k)$ is locally of finite type. Since $X_ K \to \mathop{\mathrm{Spec}}(K)$ is quasi-compact, we see that $X_ K$ is quasi-compact, hence $X$ is quasi-compact, hence $X \to \mathop{\mathrm{Spec}}(k)$ is of finite type. By Morphisms, Lemma 29.39.4 we see that $X_ K$ has an ample invertible sheaf. Then $X$ has an ample invertible sheaf by Lemma 33.15.1. Hence $X \to \mathop{\mathrm{Spec}}(k)$ is quasi-projective by Morphisms, Lemma 29.39.4. $\square$

The following lemma is a special case of Descent, Lemma 35.20.14.

Lemma 33.15.4. Let $k$ be a field. Let $X$ be a scheme over $k$. If $X_ K$ is proper over $K$ for some field extension $k \subset K$, then $X$ is proper over $k$.

Proof. Let $k \subset K$ be a field extension such that $X_ K$ is proper over $K$. Recall that this implies $X_ K$ is separated and quasi-compact (Morphisms, Definition 29.41.1). The morphism $X_ K \to X$ is surjective. Hence $X$ is quasi-compact as the image of a quasi-compact scheme (Properties, Definition 28.26.1). Since $X_ K$ is separated we see that $X$ is quasi-separated: If $U, V \subset X$ are affine open, then $(U \cap V)_ K = U_ K \cap V_ K$ is quasi-compact and $(U \cap V)_ K \to U \cap V$ is surjective. Thus Schemes, Lemma 26.21.6 applies.

Write $K = \mathop{\mathrm{colim}}\nolimits A_ i$ as the colimit of the subalgebras of $K$ which are of finite type over $k$. Denote $X_ i = X \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(A_ i)$. By Limits, Lemma 32.13.1 there exists an $i$ such that $X_ i \to \mathop{\mathrm{Spec}}(A_ i)$ is proper. Here we use that $X$ is quasi-compact and quasi-separated as just shown. Choose a maximal ideal $\mathfrak m \subset A_ i$. By the Hilbert Nullstellensatz (Algebra, Theorem 10.34.1) the residue field $k' = A_ i/\mathfrak m$ is a finite extension of $k$. The base change $X_{k'} \to \mathop{\mathrm{Spec}}(k')$ is proper (Morphisms, Lemma 29.41.5). Since $k \subset k'$ is finite both $X_{k'} \to X$ and the composition $X_{k'} \to \mathop{\mathrm{Spec}}(k)$ are proper as well (Morphisms, Lemmas 29.44.11, 29.41.5, and 29.41.4). The first implies that $X$ is separated over $k$ as $X_{k'}$ is separated (Morphisms, Lemma 29.41.11). The second implies that $X \to \mathop{\mathrm{Spec}}(k)$ is proper by Morphisms, Lemma 29.41.9. $\square$

Lemma 33.15.5. Let $k$ be a field. Let $X$ be a scheme over $k$. If $X_ K$ is projective over $K$ for some field extension $k \subset K$, then $X$ is projective over $k$.

Proof. A scheme over $k$ is projective over $k$ if and only if it is quasi-projective and proper over $k$. See Morphisms, Lemma 29.43.13. Thus the lemma follows from Lemmas 33.15.3 and 33.15.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BDB. Beware of the difference between the letter 'O' and the digit '0'.