The Stacks project

Theorem 53.6.2. Let $X$ be a connected scheme. Let $\overline{x}$ be a geometric point of $X$.

  1. The fibre functor $F_{\overline{x}}$ defines an equivalence of categories

    \[ \textit{FÉt}_ X \longrightarrow \textit{Finite-}\pi _1(X, \overline{x})\textit{-Sets} \]
  2. Given a second geometric point $\overline{x}'$ of $X$ there exists an isomorphism $t : F_{\overline{x}} \to F_{\overline{x}'}$. This gives an isomorphism $\pi _1(X, \overline{x}) \to \pi _1(X, \overline{x}')$ compatible with the equivalences in (1). This isomorphism is independent of $t$ up to inner conjugation.

  3. Given a morphism $f : X \to Y$ of connected schemes denote $\overline{y} = f \circ \overline{x}$. There is a canonical continuous homomorphism

    \[ f_* : \pi _1(X, \overline{x}) \to \pi _1(Y, \overline{y}) \]

    such that the diagram

    \[ \xymatrix{ \textit{FÉt}_ Y \ar[r]_{\text{base change}} \ar[d]_{F_{\overline{y}}} & \textit{FÉt}_ X \ar[d]^{F_{\overline{x}}} \\ \textit{Finite-}\pi _1(Y, \overline{y})\textit{-Sets} \ar[r]^{f_*} & \textit{Finite-}\pi _1(X, \overline{x})\textit{-Sets} } \]

    is commutative.

Proof. Part (1) follows from Lemma 53.5.5 and Proposition 53.3.10. Part (2) is a special case of Lemma 53.3.11. For part (3) observe that the diagram

\[ \xymatrix{ \textit{FÉt}_ Y \ar[r] \ar[d]_{F_{\overline{y}}} & \textit{FÉt}_ X \ar[d]^{F_{\overline{x}}} \\ \textit{Sets} \ar@{=}[r] & \textit{Sets} } \]

is commutative (actually commutative, not just $2$-commutative) because $\overline{y} = f \circ \overline{x}$. Hence we can apply Lemma 53.3.11 with the implied transformation of functors to get (3). $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BND. Beware of the difference between the letter 'O' and the digit '0'.