Processing math: 100%

The Stacks project

Lemma 58.6.3. Let K be a field and set X = \mathop{\mathrm{Spec}}(K). Let \overline{K} be an algebraic closure and denote \overline{x} : \mathop{\mathrm{Spec}}(\overline{K}) \to X the corresponding geometric point. Let K^{sep} \subset \overline{K} be the separable algebraic closure.

  1. The functor of Lemma 58.2.2 induces an equivalence

    \textit{FÉt}_ X \longrightarrow \textit{Finite-}\text{Gal}(K^{sep}/K)\textit{-Sets}.

    compatible with F_{\overline{x}} and the functor \textit{Finite-}\text{Gal}(K^{sep}/K)\textit{-Sets} \to \textit{Sets}.

  2. This induces a canonical isomorphism

    \text{Gal}(K^{sep}/K) \longrightarrow \pi _1(X, \overline{x})

    of profinite topological groups.

Proof. The functor of Lemma 58.2.2 is the same as the functor F_{\overline{x}} because for any Y étale over X we have

\mathop{\mathrm{Mor}}\nolimits _ X(\mathop{\mathrm{Spec}}(\overline{K}), Y) = \mathop{\mathrm{Mor}}\nolimits _ X(\mathop{\mathrm{Spec}}(K^{sep}), Y)

Namely, as seen in the proof of Lemma 58.2.2 we have Y = \coprod _{i \in I} \mathop{\mathrm{Spec}}(L_ i) with L_ i/K finite separable over K. Hence any K-algebra homomorphism L_ i \to \overline{K} factors through K^{sep}. Also, note that F_{\overline{x}}(Y) is finite if and only if I is finite if and only if Y \to X is finite étale. This proves (1).

Part (2) is a formal consequence of (1), Lemma 58.3.11, and Lemma 58.3.3. (Please also see the remark below.) \square


Comments (0)

There are also:

  • 4 comment(s) on Section 58.6: Fundamental groups

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.