Lemma 58.6.3. Let K be a field and set X = \mathop{\mathrm{Spec}}(K). Let \overline{K} be an algebraic closure and denote \overline{x} : \mathop{\mathrm{Spec}}(\overline{K}) \to X the corresponding geometric point. Let K^{sep} \subset \overline{K} be the separable algebraic closure.
The functor of Lemma 58.2.2 induces an equivalence
\textit{FÉt}_ X \longrightarrow \textit{Finite-}\text{Gal}(K^{sep}/K)\textit{-Sets}.compatible with F_{\overline{x}} and the functor \textit{Finite-}\text{Gal}(K^{sep}/K)\textit{-Sets} \to \textit{Sets}.
This induces a canonical isomorphism
\text{Gal}(K^{sep}/K) \longrightarrow \pi _1(X, \overline{x})of profinite topological groups.
Comments (0)
There are also: