58.6 Fundamental groups
In this section we define Grothendieck's algebraic fundamental group. The following definition makes sense thanks to Lemma 58.5.5.
Definition 58.6.1. Let X be a connected scheme. Let \overline{x} be a geometric point of X. The fundamental group of X with base point \overline{x} is the group
\pi _1(X, \overline{x}) = \text{Aut}(F_{\overline{x}})
of automorphisms of the fibre functor F_{\overline{x}} : \textit{FÉt}_ X \to \textit{Sets} endowed with its canonical profinite topology from Lemma 58.3.1.
Combining the above with the material from Section 58.3 we obtain the following theorem.
Theorem 58.6.2. Let X be a connected scheme. Let \overline{x} be a geometric point of X.
The fibre functor F_{\overline{x}} defines an equivalence of categories
\textit{FÉt}_ X \longrightarrow \textit{Finite-}\pi _1(X, \overline{x})\textit{-Sets}
Given a second geometric point \overline{x}' of X there exists an isomorphism t : F_{\overline{x}} \to F_{\overline{x}'}. This gives an isomorphism \pi _1(X, \overline{x}) \to \pi _1(X, \overline{x}') compatible with the equivalences in (1). This isomorphism is independent of t up to inner conjugation.
Given a morphism f : X \to Y of connected schemes denote \overline{y} = f \circ \overline{x}. There is a canonical continuous homomorphism
f_* : \pi _1(X, \overline{x}) \to \pi _1(Y, \overline{y})
such that the diagram
\xymatrix{ \textit{FÉt}_ Y \ar[r]_{\text{base change}} \ar[d]_{F_{\overline{y}}} & \textit{FÉt}_ X \ar[d]^{F_{\overline{x}}} \\ \textit{Finite-}\pi _1(Y, \overline{y})\textit{-Sets} \ar[r]^{f_*} & \textit{Finite-}\pi _1(X, \overline{x})\textit{-Sets} }
is commutative.
Proof.
Part (1) follows from Lemma 58.5.5 and Proposition 58.3.10. Part (2) is a special case of Lemma 58.3.11. For part (3) observe that the diagram
\xymatrix{ \textit{FÉt}_ Y \ar[r] \ar[d]_{F_{\overline{y}}} & \textit{FÉt}_ X \ar[d]^{F_{\overline{x}}} \\ \textit{Sets} \ar@{=}[r] & \textit{Sets} }
is commutative (actually commutative, not just 2-commutative) because \overline{y} = f \circ \overline{x}. Hence we can apply Lemma 58.3.11 with the implied transformation of functors to get (3).
\square
Lemma 58.6.3. Let K be a field and set X = \mathop{\mathrm{Spec}}(K). Let \overline{K} be an algebraic closure and denote \overline{x} : \mathop{\mathrm{Spec}}(\overline{K}) \to X the corresponding geometric point. Let K^{sep} \subset \overline{K} be the separable algebraic closure.
The functor of Lemma 58.2.2 induces an equivalence
\textit{FÉt}_ X \longrightarrow \textit{Finite-}\text{Gal}(K^{sep}/K)\textit{-Sets}.
compatible with F_{\overline{x}} and the functor \textit{Finite-}\text{Gal}(K^{sep}/K)\textit{-Sets} \to \textit{Sets}.
This induces a canonical isomorphism
\text{Gal}(K^{sep}/K) \longrightarrow \pi _1(X, \overline{x})
of profinite topological groups.
Proof.
The functor of Lemma 58.2.2 is the same as the functor F_{\overline{x}} because for any Y étale over X we have
\mathop{\mathrm{Mor}}\nolimits _ X(\mathop{\mathrm{Spec}}(\overline{K}), Y) = \mathop{\mathrm{Mor}}\nolimits _ X(\mathop{\mathrm{Spec}}(K^{sep}), Y)
Namely, as seen in the proof of Lemma 58.2.2 we have Y = \coprod _{i \in I} \mathop{\mathrm{Spec}}(L_ i) with L_ i/K finite separable over K. Hence any K-algebra homomorphism L_ i \to \overline{K} factors through K^{sep}. Also, note that F_{\overline{x}}(Y) is finite if and only if I is finite if and only if Y \to X is finite étale. This proves (1).
Part (2) is a formal consequence of (1), Lemma 58.3.11, and Lemma 58.3.3. (Please also see the remark below.)
\square
Comments (4)
Comment #4651 by Rex on
Comment #4652 by Johan on
Comment #4653 by Rex on
Comment #4655 by Johan on