The Stacks project

17.19 Constructible sheaves of sets

Let $X$ be a topological space. Given a set $S$ recall that $\underline{S}$ or $\underline{S}_ X$ denotes the constant sheaf with value $S$, see Sheaves, Definition 6.7.4. Let $U \subset X$ be an open of a topological space $X$. We will denote $j_ U$ the inclusion morphism and we will denote $j_{U!} : \mathop{\mathit{Sh}}\nolimits (U) \to \mathop{\mathit{Sh}}\nolimits (X)$ the extension by the empty set described in Sheaves, Section 6.31.

Lemma 17.19.1. Let $X$ be a topological space. Let $\mathcal{B}$ be a basis for the topology on $X$. Let $\mathcal{F}$ be a sheaf of sets on $X$. There exists a set $I$ and for each $i \in I$ an element $U_ i \in \mathcal{B}$ and a finite set $S_ i$ such that there exists a surjection $\coprod _{i \in I} j_{U_ i!}\underline{S_ i} \to \mathcal{F}$.

Proof. Let $S$ be a singleton set. We will prove the result with $S_ i = S$. For every $x \in X$ and element $s \in \mathcal{F}_ x$ we can choose a $U(x, s) \in \mathcal{B}$ and $s(x, s) \in \mathcal{F}(U(x, s))$ which maps to $s$ in $\mathcal{F}_ x$. By Sheaves, Lemma 6.31.4 the section $s(x, s)$ corresponds to a map of sheaves $j_{U(x, s)!}\underline{S} \to \mathcal{F}$. Then

\[ \coprod \nolimits _{(x, s)} j_{U(x, s)!}\underline{S} \to \mathcal{F} \]

is surjective on stalks and hence surjective. $\square$

Lemma 17.19.2. Let $X$ be a topological space. Let $\mathcal{B}$ be a basis for the topology of $X$ and assume that each $U \in \mathcal{B}$ is quasi-compact. Then every sheaf of sets on $X$ is a filtered colimit of sheaves of the form

17.19.2.1
\begin{equation} \label{modules-equation-towards-constructible-sets} \text{Coequalizer}\left( \xymatrix{ \coprod \nolimits _{b = 1, \ldots , m} j_{V_ b!}\underline{S_ b} \ar@<1ex>[r] \ar@<-1ex>[r] & \coprod \nolimits _{a = 1, \ldots , n} j_{U_ a!}\underline{S_ a} } \right) \end{equation}

with $U_ a$ and $V_ b$ in $\mathcal{B}$ and $S_ a$ and $S_ b$ finite sets.

Proof. By Lemma 17.19.1 every sheaf of sets $\mathcal{F}$ is the target of a surjection whose source $\mathcal{F}_0$ is a coproduct of sheaves the form $j_{U!}\underline{S}$ with $U \in \mathcal{B}$ and $S$ finite. Applying this to $\mathcal{F}_0 \times _\mathcal {F} \mathcal{F}_0$ we find that $\mathcal{F}$ is a coequalizer of a pair of maps

\[ \xymatrix{ \coprod \nolimits _{b \in B} j_{V_ b!}\underline{S_ b} \ar@<1ex>[r] \ar@<-1ex>[r] & \coprod \nolimits _{a \in A} j_{U_ a!}\underline{S_ a} } \]

for some index sets $A$, $B$ and $V_ b$ and $U_ a$ in $\mathcal{B}$ and $S_ a$ and $S_ b$ finite. For every finite subset $B' \subset B$ there is a finite subset $A' \subset A$ such that the coproduct over $b \in B'$ maps into the coproduct over $a \in A'$ via both maps. Namely, we can view the right hand side as a filtered colimit with injective transition maps. Hence taking sections over the quasi-compact opens $V_ b$, $b \in B'$ commutes with this coproduct, see Sheaves, Lemma 6.29.1. Thus our sheaf is the colimit of the cokernels of these maps between finite coproducts. $\square$

Lemma 17.19.3. Let $X$ be a spectral topological space. Let $\mathcal{B}$ be the set of quasi-compact open subsets of $X$. Let $\mathcal{F}$ be a sheaf of sets as in Equation (17.19.2.1). Then there exists a continuous spectral map $f : X \to Y$ to a finite sober topological space $Y$ and a sheaf of sets $\mathcal{G}$ on $Y$ with finite stalks such that $f^{-1}\mathcal{G} \cong \mathcal{F}$.

Proof. We can write $X = \mathop{\mathrm{lim}}\nolimits X_ i$ as a directed limit of finite sober spaces, see Topology, Lemma 5.23.14. Of course the transition maps $X_{i'} \to X_ i$ are spectral and hence by Topology, Lemma 5.24.5 the maps $p_ i : X \to X_ i$ are spectral. For some $i$ we can find opens $U_{a, i}$ and $V_{b, i}$ of $X_ i$ whose inverse images are $U_ a$ and $V_ b$, see Topology, Lemma 5.24.6. The two maps

\[ \beta , \gamma : \coprod \nolimits _{b \in B} j_{V_ b!}\underline{S_ b} \longrightarrow \coprod \nolimits _{a \in A} j_{U_ a!}\underline{S_ a} \]

whose coequalizer is $\mathcal{F}$ correspond by adjunction to two families

\[ \beta _ b, \gamma _ b : S_ b \longrightarrow \Gamma (V_ b, \coprod \nolimits _{a \in A} j_{U_ a!}\underline{S_ a}), \quad b \in B \]

of maps of sets. Observe that $p_ i^{-1}(j_{U_{a, i}!}\underline{S_ a}) = j_{U_ a!}\underline{S_ a}$ and $(X_{i'} \to X_ i)^{-1}(j_{U_{a, i}!}\underline{S_ a}) = j_{U_{a, i'}!}\underline{S_ a}$. It follows from Sheaves, Lemma 6.29.3 (and using that $S_ b$ and $B$ are finite sets) that after increasing $i$ we find maps

\[ \beta _{b, i}, \gamma _{b, i} : S_ b \longrightarrow \Gamma (V_{b, i}, \coprod \nolimits _{a \in A} j_{U_{a, i}!}\underline{S_ a}) , \quad b \in B \]

which give rise to the maps $\beta _ b$ and $\gamma _ b$ after pulling back by $p_ i$. These maps correspond in turn to maps of sheaves

\[ \beta _ i, \gamma _ i : \coprod \nolimits _{b \in B} j_{V_{b, i}!}\underline{S_ b} \longrightarrow \coprod \nolimits _{a \in A} j_{U_{a, i}!}\underline{S_ a} \]

on $X_ i$. Then we can take $Y = X_ i$ and

\[ \mathcal{G} = \text{Coequalizer}\left( \xymatrix{ \coprod \nolimits _{b = 1, \ldots , m} j_{V_{b, i}!}\underline{S_ b} \ar@<1ex>[r] \ar@<-1ex>[r] & \coprod \nolimits _{a = 1, \ldots , n} j_{U_{a, i}!}\underline{S_ a} } \right) \]

We omit some details. $\square$

Lemma 17.19.4. Let $X$ be a spectral topological space. Let $\mathcal{B}$ be the set of quasi-compact open subsets of $X$. Let $\mathcal{F}$ be a sheaf of sets as in Equation (17.19.2.1). Then there exist finitely many constructible closed subsets $Z_1, \ldots , Z_ n \subset X$ and finite sets $S_ i$ such that $\mathcal{F}$ is isomorphic to a subsheaf of $\prod (Z_ i \to X)_*\underline{S_ i}$.

Proof. By Lemma 17.19.3 we reduce to the case of a finite sober topological space and a sheaf with finite stalks. In this case $\mathcal{F} \subset \prod _{x \in X} i_{x, *}\mathcal{F}_ x$ where $i_ x : \{ x\} \to X$ is the embedding. We omit the proof that $i_{x, *}\mathcal{F}_ x$ is a constant sheaf on $\overline{\{ x\} }$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CAG. Beware of the difference between the letter 'O' and the digit '0'.