Lemma 37.39.4. Consider a diagram
\vcenter { \xymatrix{ X \ar[d] & Y \ar[d] \\ S & T \ar[l] } } \quad \text{with points}\quad \vcenter { \xymatrix{ x \ar[d] & y \ar[d] \\ s & t \ar[l] } }
where S be a locally Noetherian scheme and the morphisms are locally of finite type. Assume \mathcal{O}_{S, s} is a G-ring. Assume further we are given a local \mathcal{O}_{S, s}-algebra map
\sigma : \mathcal{O}_{T, t} \longrightarrow \mathcal{O}_{S, s}^\wedge
and a local \mathcal{O}_{S, s}-algebra map
\varphi : \mathcal{O}_{X, x} \longrightarrow \mathcal{O}_{Y_\sigma , y_\sigma }^\wedge
where Y_\sigma = Y \times _{T, \sigma } \mathop{\mathrm{Spec}}(\mathcal{O}_{S, s}^\wedge ) and y_\sigma is the unique point of Y_\sigma lying over y. For every N \geq 1 there exists a commutative diagram
\xymatrix{ X \ar[d] & X \times _ S V \ar[l] \ar[rd] & W \ar[l]^-f \ar[r] \ar[d] & Y \times _{T, \tau } V \ar[r] \ar[ld] & Y \ar[d] \\ S & & V \ar[ll] \ar[rr]^\tau & & T }
of schemes over S and points w \in W, v \in V such that
v \mapsto s, \tau (v) = t, f(w) = (x, v), and w \mapsto (y, v),
(V, v) \to (S, s) is an elementary étale neighbourhood,
the diagram
\xymatrix{ \mathcal{O}_{S, s}^\wedge \ar[r] & \mathcal{O}_{V, v}^\wedge \\ \mathcal{O}_{T, t} \ar[r]^{\tau ^\sharp _ v} \ar[u]_\sigma & \mathcal{O}_{V, v} \ar[u] }
commutes module \mathfrak m_ v^ N,
(W, w) \to (Y \times _{T, \tau } V, (y, v)) is an elementary étale neighbourhood,
the diagram
\xymatrix{ \mathcal{O}_{X, x} \ar[r]_\varphi & \mathcal{O}_{Y_\sigma , y_\sigma }^\wedge \ar[r] & \mathcal{O}_{Y_\sigma , y_\sigma }/\mathfrak m_{y_\sigma }^ N \ar@{=}[r] & \mathcal{O}_{Y \times _{T, \tau } V, (y, v)}/\mathfrak m_{(y, v)}^ N \ar[d]_{\cong } \\ \mathcal{O}_{X, x} \ar[r] \ar@{=}[u] & \mathcal{O}_{X \times _ S V, (x, v)} \ar[r]^{f^\sharp _ w} & \mathcal{O}_{W, w} \ar[r] & \mathcal{O}_{W, w}/\mathfrak m_ w^ N }
commutes. The equality comes from the fact that Y_\sigma and Y \times _{T, \tau } V are canonically isomorphic over \mathcal{O}_{V, v}/\mathfrak m_ v^ N = \mathcal{O}_{S, s}/\mathfrak m_ s^ N by parts (2) and (3).
Proof.
After replacing X, S, T, Y by affine open subschemes we may assume the diagram in the statement of the lemma comes from applying \mathop{\mathrm{Spec}} to a diagram
\vcenter { \xymatrix{ A & B \\ R \ar[u] \ar[r] & C \ar[u] } } \quad \text{with primes}\quad \vcenter { \xymatrix{ \mathfrak p_ A & \mathfrak p_ B \\ \mathfrak p_ R \ar@{-}[u] \ar@{-}[r] & \mathfrak p_ C \ar@{-}[u] } }
of Noetherian rings and finite type ring maps. In this proof every ring E will be a Noetherian R-algebra endowed with a prime ideal \mathfrak p_ E lying over \mathfrak p_ R and all ring maps will be R-algebra maps compatible with the given primes. Moreover, if we write E^\wedge we mean the completion of the localization of E at \mathfrak p_ E. We will also use without further mention that an étale ring map E_1 \to E_2 such that \kappa (\mathfrak p_{E_1}) = \kappa (\mathfrak p_{E_2}) induces an isomorphism E_1^\wedge = E_2^\wedge by More on Algebra, Lemma 15.43.9.
With this notation \sigma and \varphi correspond to ring maps
\sigma : C \to R^\wedge \quad \text{and}\quad \varphi : A \longrightarrow (B \otimes _{C, \sigma } R^\wedge )^\wedge
Here is a picture
\xymatrix{ A \ar@/^1em/[rrr]^\varphi & B \ar[r] & B \otimes _{C, \sigma } R^\wedge \ar[r] & (B \otimes _{C, \sigma } R^\wedge )^\wedge \\ R \ar[r] \ar[u] & C \ar[r]^\sigma \ar[u] & R^\wedge \ar[u] \ar[ru] }
Observe that R^\wedge is a G-ring by More on Algebra, Proposition 15.50.6. Thus B \otimes _{C, \sigma } R^\wedge is a G-ring by More on Algebra, Proposition 15.50.10. By Lemma 37.39.1 (translated into algebra) there exists an étale ring map B \otimes _{C, \sigma } R^\wedge \to B' inducing an isomorphism \kappa (\mathfrak p_{B \otimes _{C, \sigma } R^\wedge }) \to \kappa (\mathfrak p_{B'}) and an R-algebra map A \to B' such that the composition
A \to B' \to (B')^\wedge = (B \otimes _{C, \sigma } R^\wedge )^\wedge
is the same as \varphi modulo (\mathfrak p_{(B \otimes _{C, \sigma } R^\wedge )^\wedge })^ N. Thus we may replace \varphi by this composition because the only way \varphi enters the conclusion is via the commutativity requirement in part (5) of the statement of the lemma. Picture:
\xymatrix{ & & B' \ar[r] & (B')^\wedge \ar@{=}[d] \\ A \ar[rru] & B \ar[r] & B \otimes _{C, \sigma } R^\wedge \ar[r] \ar[u] & (B \otimes _{C, \sigma } R^\wedge )^\wedge \\ R \ar[r] \ar[u] & C \ar[r]^\sigma \ar[u] & R^\wedge \ar[u] \ar[ru] }
Next, we use that R^\wedge is a filtered colimit of smooth R-algebras (Smoothing Ring Maps, Theorem 16.12.1) because R_{\mathfrak p_ R} is a G-ring by assumption. Since C is of finite presentation over R we get a factorization
C \to R' \to R^\wedge
for some R \to R' smooth, see Algebra, Lemma 10.127.3. After increasing R' we may assume there exists an étale B \otimes _ C R'-algebra B'' whose base change to B \otimes _{C, \sigma } R^\wedge is B', see Algebra, Lemma 10.143.3. Then B' is the filtered colimit of these B'' and we conclude that after increasing R' we may assume there is an R-algebra map A \to B'' such that A \to B'' \to B' is the previously constructed map (same reference as above). Picture
\xymatrix{ & & B'' \ar[r] & B' \ar[r] & (B')^\wedge \ar@{=}[d] \\ A \ar[rru] & B \ar[r] & B \otimes _ C R' \ar[r] \ar[u] & B \otimes _{C, \sigma } R^\wedge \ar[r] \ar[u] & (B \otimes _{C, \sigma } R^\wedge )^\wedge \\ R \ar[r] \ar[u] & C \ar[r] \ar[u] & R' \ar[r] \ar[u] & R^\wedge \ar[u] \ar[ru] }
and
B' = B'' \otimes _{(B \otimes _ C R')} (B \otimes _{C, \sigma } R^\wedge )
This means that we may replace C by R', \sigma : C \to R^\wedge by R' \to R^\wedge , and B by B'' so that we simplify to the diagram
\xymatrix{ A \ar[r] & B \ar[r] & B \otimes _{C, \sigma } R^\wedge \\ R \ar[r] \ar[u] & C \ar[r]^\sigma \ar[u] & R^\wedge \ar[u] }
with \varphi equal to the composition of the horizontal arrows followed by the canonical map from B \otimes _{C, \sigma } R^\wedge to its completion. The final step in the proof is to apply Lemma 37.39.1 (or its proof) one more time to \mathop{\mathrm{Spec}}(C) and \mathop{\mathrm{Spec}}(R) over \mathop{\mathrm{Spec}}(R) and the map C \to R^\wedge . The lemma produces a ring map C \to D such that R \to D is étale, such that \kappa (\mathfrak p_ R) = \kappa (\mathfrak p_ D), and such that
C \to D \to D^\wedge = R^\wedge
is equal to \sigma : C \to R^\wedge modulo (\mathfrak p_{R^\wedge })^ N. Then we can take
V = \mathop{\mathrm{Spec}}(D) \quad \text{and}\quad W = \mathop{\mathrm{Spec}}(B \otimes _ C D)
as our solution to the problem posed by the lemma. Namely the diagram
\xymatrix{ A \ar[r] & B \otimes _{C, \sigma } R^\wedge \ar[r] & B \otimes _{C, \sigma } R^\wedge /(\mathfrak p_{R^\wedge })^ N \ar@{=}[r] & B \otimes _ C D/(\mathfrak p_ D)^ N \\ A \ar@{=}[u] \ar[r] & A \otimes _ R D \ar[r] & B \otimes _ R D \ar[r] & B \otimes _ C D/(\mathfrak p_ D)^ N \ar@{=}[u] }
commutes because C \to D \to D^\wedge = R^\wedge is equal to \sigma modulo (\mathfrak p_{R^\wedge })^ N. This proves part (5) and the other properties are immediate from the construction.
\square
Comments (0)
There are also: