Processing math: 100%

The Stacks project

Lemma 76.18.2. Let S be a scheme. Consider a commutative diagram

\xymatrix{ (X \subset X') \ar[rr]_{(f, f')} \ar[rd] & & (Y \subset Y') \ar[ld] \\ & (B \subset B') }

of thickenings of algebraic spaces over S. Assume

  1. X' is flat over B',

  2. f is flat,

  3. B \subset B' is a finite order thickening, and

  4. X = B \times _{B'} X' and Y = B \times _{B'} Y'.

Then f' is flat and Y' is flat over B' at all points in the image of f'.

Proof. Choose a scheme U' and a surjective étale morphism U' \to B'. Choose a scheme V' and a surjective étale morphism V' \to U' \times _{B'} Y'. Choose a scheme W' and a surjective étale morphism W' \to V' \times _{Y'} X'. Let U, V, W be the base change of U', V', W' by B \to B'. Then flatness of f' is equivalent to flatness of W' \to V' and we are given that W \to V is flat. Hence we may apply the lemma in the case of schemes to the diagram

\xymatrix{ (W \subset W') \ar[rr] \ar[rd] & & (V \subset V') \ar[ld] \\ & (U \subset U') }

of thickenings of schemes. See More on Morphisms, Lemma 37.10.2. The statement about flatness of Y'/B' at points in the image of f' follows in the same manner. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.