Lemma 75.7.8. Let $S$ be a scheme. Consider a cartesian diagram of algebraic spaces over $S$
\[ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]
with $f$ locally of finite type. Let $\mathcal{F}$ be a finite type, quasi-coherent $\mathcal{O}_ X$-module. If the support of $\mathcal{F}$ is proper over $Y$, then the support of $(g')^*\mathcal{F}$ is proper over $Y'$.
Proof.
Observe that the statement makes sense because $(g')*\mathcal{F}$ is of finite type by Modules on Sites, Lemma 18.23.4. We have $\text{Supp}((g')^*\mathcal{F}) = |g'|^{-1}(\text{Supp}(\mathcal{F}))$ by Morphisms of Spaces, Lemma 67.15.2. Thus the lemma follows from Lemma 75.7.4.
$\square$
Comments (0)