The Stacks project

Lemma 75.7.8. Let $S$ be a scheme. Consider a cartesian diagram of algebraic spaces over $S$

\[ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]

with $f$ locally of finite type. Let $\mathcal{F}$ be a finite type, quasi-coherent $\mathcal{O}_ X$-module. If the support of $\mathcal{F}$ is proper over $Y$, then the support of $(g')^*\mathcal{F}$ is proper over $Y'$.

Proof. Observe that the statement makes sense because $(g')*\mathcal{F}$ is of finite type by Modules on Sites, Lemma 18.23.4. We have $\text{Supp}((g')^*\mathcal{F}) = |g'|^{-1}(\text{Supp}(\mathcal{F}))$ by Morphisms of Spaces, Lemma 67.15.2. Thus the lemma follows from Lemma 75.7.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CZJ. Beware of the difference between the letter 'O' and the digit '0'.