Lemma 73.8.8. Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces over $S$. The functor
\[ u : (\textit{Spaces}/Y)_{ph} \longrightarrow (\textit{Spaces}/X)_{ph}, \quad V/Y \longmapsto V/X \]
is cocontinuous, and has a continuous right adjoint
\[ v : (\textit{Spaces}/X)_{ph} \longrightarrow (\textit{Spaces}/Y)_{ph}, \quad (U \to Y) \longmapsto (U \times _ X Y \to Y). \]
They induce the same morphism of topoi
\[ f_{big} : \mathop{\mathit{Sh}}\nolimits ((\textit{Spaces}/Y)_{ph}) \longrightarrow \mathop{\mathit{Sh}}\nolimits ((\textit{Spaces}/X)_{ph}) \]
We have $f_{big}^{-1}(\mathcal{G})(U/Y) = \mathcal{G}(U/X)$. We have $f_{big, *}(\mathcal{F})(U/X) = \mathcal{F}(U \times _ X Y/Y)$. Also, $f_{big}^{-1}$ has a left adjoint $f_{big!}$ which commutes with fibre products and equalizers.
Proof.
The functor $u$ is cocontinuous, continuous, and commutes with fibre products and equalizers. Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce the formula for $f_{big}^{-1}$ and the existence of $f_{big!}$. Moreover, the functor $v$ is a right adjoint because given $U/T$ and $V/X$ we have $\mathop{\mathrm{Mor}}\nolimits _ X(u(U), V) = \mathop{\mathrm{Mor}}\nolimits _ Y(U, V \times _ X Y)$ as desired. Thus we may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula for $f_{big, *}$.
$\square$
Comments (0)