Lemma 99.16.9. In Situation 99.16.3. Let
\xymatrix{ Z \ar[r] \ar[d] & Z' \ar[d] \\ Y \ar[r] & Y' }
be a pushout in the category of schemes over S where Z \to Z' is a finite order thickening and Z \to Y is affine, see More on Morphisms, Lemma 37.14.3. Then the functor on fibre categories
\mathcal{C}\! \mathit{omplexes}_{X/B, Y'} \longrightarrow \mathcal{C}\! \mathit{omplexes}_{X/B, Y} \times _{\mathcal{C}\! \mathit{omplexes}_{X/B, Z}} \mathcal{C}\! \mathit{omplexes}_{X/B, Z'}
is an equivalence.
Proof.
Observe that the corresponding map
B(Y') \longrightarrow B(Y) \times _{B(Z)} B(Z')
is a bijection, see Pushouts of Spaces, Lemma 81.6.1. Thus using the commutative diagram
\xymatrix{ \mathcal{C}\! \mathit{omplexes}_{X/B, Y'} \ar[r] \ar[d] & \mathcal{C}\! \mathit{omplexes}_{X/B, Y} \times _{\mathcal{C}\! \mathit{omplexes}_{X/B, Z}} \mathcal{C}\! \mathit{omplexes}_{X/B, Z'} \ar[d] \\ B(Y') \ar[r] & B(Y) \times _{B(Z)} B(Z') }
we see that we may assume that Y' is a scheme over B'. By Remark 99.16.7 we may replace B by Y' and X by X \times _ B Y'. Thus we may assume B = Y'.
Assume B = Y'. We first prove fully faithfulness of our functor. To do this, let \xi _1, \xi _2 be two objects of \mathcal{C}\! \mathit{omplexes}_{X/B} over Y'. Then we have to show that
\mathit{Isom}(\xi _1, \xi _2)(Y') \longrightarrow \mathit{Isom}(\xi _1, \xi _2)(Y) \times _{\mathit{Isom}(\xi _1, \xi _2)(Z)} \mathit{Isom}(\xi _1, \xi _2)(Z')
is bijective. However, we already know that \mathit{Isom}(\xi _1, \xi _2) is an algebraic space over B = Y'. Thus this bijectivity follows from Artin's Axioms, Lemma 98.4.1 (or the aforementioned Pushouts of Spaces, Lemma 81.6.1).
Essential surjectivity. Let (E_ Y, E_{Z'}, \alpha ) be a triple, where E_ Y \in D(\mathcal{O}_ Y) and E_{Z'} \in D(\mathcal{O}_{X_{Z'}}) are objects such that (Y, Y \to B, E_ Y) is an object of \mathcal{C}\! \mathit{omplexes}_{X/B} over Y, such that (Z', Z' \to B, E_{Z'}) is an object of \mathcal{C}\! \mathit{omplexes}_{X/B} over Z', and \alpha : L(X_ Z \to X_ Y)^*E_ Y \to L(X_ Z \to X_{Z'})^*E_{Z'} is an isomorphism in D(\mathcal{O}_{Z'}). That is to say
((Y, Y \to B, E_ Y), (Z', Z' \to B, E_{Z'}), \alpha )
is an object of the target of the arrow of our lemma. Observe that the diagram
\xymatrix{ X_ Z \ar[r] \ar[d] & X_{Z'} \ar[d] \\ X_ Y \ar[r] & X_{Y'} }
is a pushout with X_ Z \to X_ Y affine and X_ Z \to X_{Z'} a thickening (see Pushouts of Spaces, Lemma 81.6.7). Hence by Pushouts of Spaces, Lemma 81.8.1 we find an object E_{Y'} \in D(\mathcal{O}_{X_{Y'}}) together with isomorphisms L(X_ Y \to X_{Y'})^*E_{Y'} \to E_ Y and L(X_{Z'} \to X_{Y'})^*E_{Y'} \to E_ Z compatible with \alpha . Clearly, if we show that E_{Y'} is Y'-perfect, then we are done, because property (2) of Lemma 99.16.2 is a property on points (and Y and Y' have the same points). This follows from More on Morphisms of Spaces, Lemma 76.54.4.
\square
Comments (0)
There are also: