Lemma 108.12.1. The diagonal of $\mathcal{C}\! \mathit{omplexes}_{X/B}$ over $B$ is affine and of finite presentation.
Proof. The representability of the diagonal by algebraic spaces was shown in Quot, Lemma 99.16.5. From the proof we find that we have to show: given a scheme $T$ over $B$ and objects $E, E' \in D(\mathcal{O}_{X_ T})$ such that $(T, E)$ and $(T, E')$ are objects of the fibre category of $\mathcal{C}\! \mathit{omplexes}_{X/B}$ over $T$, then $\mathit{Isom}(E, E') \to T$ is affine and of finite presentation. Here $\mathit{Isom}(E, E')$ is the functor
where $E_{T'}$ and $E'_{T'}$ are the derived pullbacks of $E$ and $E'$ to $X_{T'}$. Consider the functor $H = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (E, E')$ defined by the rule
By Quot, Lemma 99.16.1 this is an algebraic space affine and of finite presentation over $T$. The same is true for $H' = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (E', E)$, $I = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (E, E)$, and $I' = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (E', E')$. Therefore we see that
where $c(\varphi ', \varphi ) = (\varphi \circ \varphi ', \varphi ' \circ \varphi )$ and $\sigma = (\text{id}, \text{id})$ (compare with the proof of Quot, Proposition 99.4.3). Thus $\mathit{Isom}(E, E')$ is affine over $T$ as a fibre product of schemes affine over $T$. Similarly, $\mathit{Isom}(E, E')$ is of finite presentation over $T$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: