Lemma 109.5.1. The diagonal of $\mathcal{C}\! \mathit{urves}$ is separated and of finite presentation.
Proof. Recall that $\mathcal{C}\! \mathit{urves}$ is a limit preserving algebraic stack, see Quot, Lemma 99.15.6. By Limits of Stacks, Lemma 102.3.6 this implies that $\Delta : \mathcal{P}\! \mathit{olarized}\to \mathcal{P}\! \mathit{olarized}\times \mathcal{P}\! \mathit{olarized}$ is limit preserving. Hence $\Delta $ is locally of finite presentation by Limits of Stacks, Proposition 102.3.8.
Let us prove that $\Delta $ is separated. To see this, it suffices to show that given a scheme $U$ and two objects $Y \to U$ and $X \to U$ of $\mathcal{C}\! \mathit{urves}$ over $U$, the algebraic space
is separated. This we have seen in Moduli Stacks, Lemmas 108.10.2 and 108.10.3 that the target is a separated algebraic space.
To finish the proof we show that $\Delta $ is quasi-compact. Since $\Delta $ is representable by algebraic spaces, it suffices to check the base change of $\Delta $ by a surjective smooth morphism $U \to \mathcal{C}\! \mathit{urves}\times \mathcal{C}\! \mathit{urves}$ is quasi-compact (see for example Properties of Stacks, Lemma 100.3.3). We choose $U = \coprod U_ i$ to be a disjoint union of affine opens with a surjective smooth morphism
Then $U \to \mathcal{C}\! \mathit{urves}\times \mathcal{C}\! \mathit{urves}$ will be surjective and smooth since $\textit{PolarizedCurves} \to \mathcal{C}\! \mathit{urves}$ is surjective and smooth by Lemma 109.4.2. Since $\textit{PolarizedCurves}$ is limit preserving (by Artin's Axioms, Lemma 98.11.2 and Quot, Lemmas 99.15.6, 99.14.8, and 99.13.6), we see that $\textit{PolarizedCurves} \to \mathop{\mathrm{Spec}}(\mathbf{Z})$ is locally of finite presentation, hence $U_ i \to \mathop{\mathrm{Spec}}(\mathbf{Z})$ is locally of finite presentation (Limits of Stacks, Proposition 102.3.8 and Morphisms of Stacks, Lemmas 101.27.2 and 101.33.5). In particular, $U_ i$ is Noetherian affine. This reduces us to the case discussed in the next paragraph.
In this paragraph, given a Noetherian affine scheme $U$ and two objects $(Y, \mathcal{N})$ and $(X, \mathcal{L})$ of $\textit{PolarizedCurves}$ over $U$, we show the algebraic space
is quasi-compact. Since the connected components of $U$ are open and closed we may replace $U$ by these. Thus we may and do assume $U$ is connected. Let $u \in U$ be a point. Let $Q$, $P$ be the Hilbert polynomials of these families, i.e.,
see Varieties, Lemma 33.45.1. Since $U$ is connected and since the functions $u \mapsto \chi (Y_ u, \mathcal{N}_ u^{\otimes n})$ and $u \mapsto \chi (X_ u, \mathcal{L}_ u^{\otimes n})$ are locally constant (see Derived Categories of Schemes, Lemma 36.32.2) we see that we get the same Hilbert polynomial in every point of $U$. Set
on $Y \times _ U X$. Given $(f, \varphi ) \in \mathit{Isom}_ U(Y, X)(T)$ for some scheme $T$ over $U$ then for every $t \in T$ we have
by Riemann-Roch for proper curves, more precisely by Varieties, Definition 33.44.1 and Lemma 33.44.7 and the fact that $f_ t$ is an isomorphism. Setting $P'(t) = Q(t) + P(t) - P(0)$ we find
The intersection is an intersection of open subspaces of $\mathit{Mor}_ U(Y, X)$, see Moduli Stacks, Lemma 108.10.3 and Remark 108.10.4. Now $\mathit{Mor}^{P', \mathcal{M}}_ U(Y, X)$ is a Noetherian algebraic space as it is of finite presentation over $U$ by Moduli Stacks, Lemma 108.10.5. Thus the intersection is a Noetherian algebraic space too and the proof is finished. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)