The Stacks project

51.2 Generalities

The following lemma tells us that the functor $R\Gamma _ Z$ is related to cohomology with supports.

Lemma 51.2.1. Let $A$ be a ring and let $I$ be a finitely generated ideal. Set $Z = V(I) \subset X = \mathop{\mathrm{Spec}}(A)$. For $K \in D(A)$ corresponding to $\widetilde{K} \in D_\mathit{QCoh}(\mathcal{O}_ X)$ via Derived Categories of Schemes, Lemma 36.3.5 there is a functorial isomorphism

\[ R\Gamma _ Z(K) = R\Gamma _ Z(X, \widetilde{K}) \]

where on the left we have Dualizing Complexes, Equation (47.9.0.1) and on the right we have the functor of Cohomology, Section 20.34.

Proof. By Cohomology, Lemma 20.34.5 there exists a distinguished triangle

\[ R\Gamma _ Z(X, \widetilde{K}) \to R\Gamma (X, \widetilde{K}) \to R\Gamma (U, \widetilde{K}) \to R\Gamma _ Z(X, \widetilde{K})[1] \]

where $U = X \setminus Z$. We know that $R\Gamma (X, \widetilde{K}) = K$ by Derived Categories of Schemes, Lemma 36.3.5. Say $I = (f_1, \ldots , f_ r)$. Then we obtain a finite affine open covering $\mathcal{U} : U = D(f_1) \cup \ldots \cup D(f_ r)$. By Derived Categories of Schemes, Lemma 36.9.4 the alternating Čech complex $\text{Tot}(\check{\mathcal{C}}_{alt}^\bullet (\mathcal{U}, \widetilde{K^\bullet }))$ computes $R\Gamma (U, \widetilde{K})$ where $K^\bullet $ is any complex of $A$-modules representing $K$. Working through the definitions we find

\[ R\Gamma (U, \widetilde{K}) = \text{Tot}\left( K^\bullet \otimes _ A (\prod \nolimits _{i_0} A_{f_{i_0}} \to \prod \nolimits _{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to \ldots \to A_{f_1\ldots f_ r})\right) \]

It is clear that $K^\bullet = R\Gamma (X, \widetilde{K^\bullet }) \to R\Gamma (U, \widetilde{K}^\bullet )$ is induced by the diagonal map from $A$ into $\prod A_{f_ i}$. Hence we conclude that

\[ R\Gamma _ Z(X, \mathcal{F}^\bullet ) = \text{Tot}\left( K^\bullet \otimes _ A (A \to \prod \nolimits _{i_0} A_{f_{i_0}} \to \prod \nolimits _{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to \ldots \to A_{f_1\ldots f_ r})\right) \]

By Dualizing Complexes, Lemma 47.9.1 this complex computes $R\Gamma _ Z(K)$ and we see the lemma holds. $\square$

Lemma 51.2.2. Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal. Set $X = \mathop{\mathrm{Spec}}(A)$, $Z = V(I)$, $U = X \setminus Z$, and $j : U \to X$ the inclusion morphism. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ U$-module. Then

  1. there exists an $A$-module $M$ such that $\mathcal{F}$ is the restriction of $\widetilde{M}$ to $U$,

  2. given $M$ there is an exact sequence

    \[ 0 \to H^0_ Z(M) \to M \to H^0(U, \mathcal{F}) \to H^1_ Z(M) \to 0 \]

    and isomorphisms $H^ p(U, \mathcal{F}) = H^{p + 1}_ Z(M)$ for $p \geq 1$,

  3. we may take $M = H^0(U, \mathcal{F})$ in which case we have $H^0_ Z(M) = H^1_ Z(M) = 0$.

Proof. The existence of $M$ follows from Properties, Lemma 28.22.1 and the fact that quasi-coherent sheaves on $X$ correspond to $A$-modules (Schemes, Lemma 26.7.5). Then we look at the distinguished triangle

\[ R\Gamma _ Z(X, \widetilde{M}) \to R\Gamma (X, \widetilde{M}) \to R\Gamma (U, \widetilde{M}|_ U) \to R\Gamma _ Z(X, \widetilde{M})[1] \]

of Cohomology, Lemma 20.34.5. Since $X$ is affine we have $R\Gamma (X, \widetilde{M}) = M$ by Cohomology of Schemes, Lemma 30.2.2. By our choice of $M$ we have $\mathcal{F} = \widetilde{M}|_ U$ and hence this produces an exact sequence

\[ 0 \to H^0_ Z(X, \widetilde{M}) \to M \to H^0(U, \mathcal{F}) \to H^1_ Z(X, \widetilde{M}) \to 0 \]

and isomorphisms $H^ p(U, \mathcal{F}) = H^{p + 1}_ Z(X, \widetilde{M})$ for $p \geq 1$. By Lemma 51.2.1 we have $H^ i_ Z(M) = H^ i_ Z(X, \widetilde{M})$ for all $i$. Thus (1) and (2) do hold. Finally, setting $M' = H^0(U, \mathcal{F})$ we see that the kernel and cokernel of $M \to M'$ are $I$-power torsion. Therefore $\widetilde{M}|_ U \to \widetilde{M'}|_ U$ is an isomorphism and we can indeed use $M'$ as predicted in (3). It goes without saying that we obtain zero for both $H^0_ Z(M')$ and $H^0_ Z(M')$. $\square$

Lemma 51.2.3. Let $I, J \subset A$ be finitely generated ideals of a ring $A$. If $M$ is an $I$-power torsion module, then the canonical map

\[ H^ i_{V(I) \cap V(J)}(M) \to H^ i_{V(J)}(M) \]

is an isomorphism for all $i$.

Proof. Use the spectral sequence of Dualizing Complexes, Lemma 47.9.6 to reduce to the statement $R\Gamma _ I(M) = M$ which is immediate from the construction of local cohomology in Dualizing Complexes, Section 47.9. $\square$

Lemma 51.2.4. Let $S \subset A$ be a multiplicative set of a ring $A$. Let $M$ be an $A$-module with $S^{-1}M = 0$. Then $\mathop{\mathrm{colim}}\nolimits _{f \in S} H^0_{V(f)}(M) = M$ and $\mathop{\mathrm{colim}}\nolimits _{f \in S} H^1_{V(f)}(M) = 0$.

Proof. The statement on $H^0$ follows directly from the definitions. To see the statement on $H^1$ observe that $R\Gamma _{V(f)}$ and $H^1_{V(f)}$ commute with colimits. Hence we may assume $M$ is annihilated by some $f \in S$. Then $H^1_{V(ff')}(M) = 0$ for all $f' \in S$ (for example by Lemma 51.2.3). $\square$

Lemma 51.2.5. Let $I \subset A$ be a finitely generated ideal of a ring $A$. Let $\mathfrak p$ be a prime ideal. Let $M$ be an $A$-module. Let $i \geq 0$ be an integer and consider the map

\[ \Psi : \mathop{\mathrm{colim}}\nolimits _{f \in A, f \not\in \mathfrak p} H^ i_{V((I, f))}(M) \longrightarrow H^ i_{V(I)}(M) \]

Then

  1. $\mathop{\mathrm{Im}}(\Psi )$ is the set of elements which map to zero in $H^ i_{V(I)}(M)_\mathfrak p$,

  2. if $H^{i - 1}_{V(I)}(M)_\mathfrak p = 0$, then $\Psi $ is injective,

  3. if $H^{i - 1}_{V(I)}(M)_\mathfrak p = H^ i_{V(I)}(M)_\mathfrak p = 0$, then $\Psi $ is an isomorphism.

Proof. For $f \in A$, $f \not\in \mathfrak p$ the spectral sequence of Dualizing Complexes, Lemma 47.9.6 degenerates to give short exact sequences

\[ 0 \to H^1_{V(f)}(H^{i - 1}_{V(I)}(M)) \to H^ i_{V((I, f))}(M) \to H^0_{V(f)}(H^ i_{V(I)}(M)) \to 0 \]

This proves (1) and part (2) follows from this and Lemma 51.2.4. Part (3) is a formal consequence. $\square$

Lemma 51.2.6. Let $I \subset I' \subset A$ be finitely generated ideals of a Noetherian ring $A$. Let $M$ be an $A$-module. Let $i \geq 0$ be an integer. Consider the map

\[ \Psi : H^ i_{V(I')}(M) \to H^ i_{V(I)}(M) \]

The following are true:

  1. if $H^ i_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ for all $\mathfrak p \in V(I) \setminus V(I')$, then $\Psi $ is surjective,

  2. if $H^{i - 1}_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ for all $\mathfrak p \in V(I) \setminus V(I')$, then $\Psi $ is injective,

  3. if $H^ i_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = H^{i - 1}_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ for all $\mathfrak p \in V(I) \setminus V(I')$, then $\Psi $ is an isomorphism.

Proof. Proof of (1). Let $\xi \in H^ i_{V(I)}(M)$. Since $A$ is Noetherian, there exists a largest ideal $I \subset I'' \subset I'$ such that $\xi $ is the image of some $\xi '' \in H^ i_{V(I'')}(M)$. If $V(I'') = V(I')$, then we are done. If not, choose a generic point $\mathfrak p \in V(I'')$ not in $V(I')$. Then we have $H^ i_{V(I'')}(M)_\mathfrak p = H^ i_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ by assumption. By Lemma 51.2.5 we can increase $I''$ which contradicts maximality.

Proof of (2). Let $\xi ' \in H^ i_{V(I')}(M)$ be in the kernel of $\Psi $. Since $A$ is Noetherian, there exists a largest ideal $I \subset I'' \subset I'$ such that $\xi '$ maps to zero in $H^ i_{V(I'')}(M)$. If $V(I'') = V(I')$, then we are done. If not, then choose a generic point $\mathfrak p \in V(I'')$ not in $V(I')$. Then we have $H^{i - 1}_{V(I'')}(M)_\mathfrak p = H^{i - 1}_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ by assumption. By Lemma 51.2.5 we can increase $I''$ which contradicts maximality.

Part (3) is formal from parts (1) and (2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DWQ. Beware of the difference between the letter 'O' and the digit '0'.