Lemma 31.29.1. Let X be an integral locally Noetherian normal scheme. For \mathcal{F} and \mathcal{G} coherent reflexive \mathcal{O}_ X-modules the map
(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X) \otimes _{\mathcal{O}_ X} \mathcal{G})^{**} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})
is an isomorphism. The rule \mathcal{F}, \mathcal{G} \mapsto (\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G})^{**} defines an abelian group law on the set of isomorphism classes of rank 1 coherent reflexive \mathcal{O}_ X-modules.
Proof.
Although not strictly necessary, we recommend reading Remark 31.12.9 before proceeding with the proof. Choose an open subscheme j : U \to X such that every irreducible component of X \setminus U has codimension \geq 2 in X and such that j^*\mathcal{F} and j^*\mathcal{G} are finite locally free, see Lemma 31.12.13. The map
\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(j^*\mathcal{F}, \mathcal{O}_ U) \otimes _{\mathcal{O}_ U} j^*\mathcal{G} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(j^*\mathcal{F}, j^*\mathcal{G})
is an isomorphism, because we may check it locally and it is clear when the modules are finite free. Observe that j^* applied to the displayed arrow of the lemma gives the arrow we've just shown is an isomorphism (small detail omitted). Since j^* defines an equivalence between coherent reflexive modules on U and coherent reflexive modules on X (by Lemma 31.12.12 and Serre's criterion Properties, Lemma 28.12.5), we conclude that the arrow of the lemma is an isomorphism too. If \mathcal{F} has rank 1, then j^*\mathcal{F} is an invertible \mathcal{O}_ U-module and the reflexive module \mathcal{F}^\vee = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}, \mathcal{O}_ X) restricts to its inverse. It follows in the same manner as before that (\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{F}^\vee )^{**} = \mathcal{O}_ X. In this way we see that we have inverses for the group law given in the statement of the lemma.
\square
Comments (0)