The Stacks project

Lemma 31.29.1. Let $X$ be an integral locally Noetherian normal scheme. For $\mathcal{F}$ and $\mathcal{G}$ coherent reflexive $\mathcal{O}_ X$-modules the map

\[ (\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X) \otimes _{\mathcal{O}_ X} \mathcal{G})^{**} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) \]

is an isomorphism. The rule $\mathcal{F}, \mathcal{G} \mapsto (\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G})^{**}$ defines an abelian group law on the set of isomorphism classes of rank $1$ coherent reflexive $\mathcal{O}_ X$-modules.

Proof. Although not strictly necessary, we recommend reading Remark 31.12.9 before proceeding with the proof. Choose an open subscheme $j : U \to X$ such that every irreducible component of $X \setminus U$ has codimension $\geq 2$ in $X$ and such that $j^*\mathcal{F}$ and $j^*\mathcal{G}$ are finite locally free, see Lemma 31.12.13. The map

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(j^*\mathcal{F}, \mathcal{O}_ U) \otimes _{\mathcal{O}_ U} j^*\mathcal{G} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(j^*\mathcal{F}, j^*\mathcal{G}) \]

is an isomorphism, because we may check it locally and it is clear when the modules are finite free. Observe that $j^*$ applied to the displayed arrow of the lemma gives the arrow we've just shown is an isomorphism (small detail omitted). Since $j^*$ defines an equivalence between coherent reflexive modules on $U$ and coherent reflexive modules on $X$ (by Lemma 31.12.12 and Serre's criterion Properties, Lemma 28.12.5), we conclude that the arrow of the lemma is an isomorphism too. If $\mathcal{F}$ has rank $1$, then $j^*\mathcal{F}$ is an invertible $\mathcal{O}_ U$-module and the reflexive module $\mathcal{F}^\vee = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}, \mathcal{O}_ X)$ restricts to its inverse. It follows in the same manner as before that $(\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{F}^\vee )^{**} = \mathcal{O}_ X$. In this way we see that we have inverses for the group law given in the statement of the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EBL. Beware of the difference between the letter 'O' and the digit '0'.