The Stacks project

31.29 Weil divisors on normal schemes

First we discuss properties of reflexive modules.

Lemma 31.29.1. Let $X$ be an integral locally Noetherian normal scheme. For $\mathcal{F}$ and $\mathcal{G}$ coherent reflexive $\mathcal{O}_ X$-modules the map

\[ (\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{O}_ X) \otimes _{\mathcal{O}_ X} \mathcal{G})^{**} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) \]

is an isomorphism. The rule $\mathcal{F}, \mathcal{G} \mapsto (\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{G})^{**}$ defines an abelian group law on the set of isomorphism classes of rank $1$ coherent reflexive $\mathcal{O}_ X$-modules.

Proof. Although not strictly necessary, we recommend reading Remark 31.12.9 before proceeding with the proof. Choose an open subscheme $j : U \to X$ such that every irreducible component of $X \setminus U$ has codimension $\geq 2$ in $X$ and such that $j^*\mathcal{F}$ and $j^*\mathcal{G}$ are finite locally free, see Lemma 31.12.13. The map

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(j^*\mathcal{F}, \mathcal{O}_ U) \otimes _{\mathcal{O}_ U} j^*\mathcal{G} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(j^*\mathcal{F}, j^*\mathcal{G}) \]

is an isomorphism, because we may check it locally and it is clear when the modules are finite free. Observe that $j^*$ applied to the displayed arrow of the lemma gives the arrow we've just shown is an isomorphism (small detail omitted). Since $j^*$ defines an equivalence between coherent reflexive modules on $U$ and coherent reflexive modules on $X$ (by Lemma 31.12.12 and Serre's criterion Properties, Lemma 28.12.5), we conclude that the arrow of the lemma is an isomorphism too. If $\mathcal{F}$ has rank $1$, then $j^*\mathcal{F}$ is an invertible $\mathcal{O}_ U$-module and the reflexive module $\mathcal{F}^\vee = \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{F}, \mathcal{O}_ X)$ restricts to its inverse. It follows in the same manner as before that $(\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{F}^\vee )^{**} = \mathcal{O}_ X$. In this way we see that we have inverses for the group law given in the statement of the lemma. $\square$

Lemma 31.29.2. Let $X$ be an integral locally Noetherian normal scheme. The group of rank $1$ coherent reflexive $\mathcal{O}_ X$-modules is isomorphic to the Weil divisor class group $\text{Cl}(X)$ of $X$.

Proof. Let $\mathcal{F}$ be a rank $1$ coherent reflexive $\mathcal{O}_ X$-module. Choose an open $U \subset X$ such that every irreducible component of $X \setminus U$ has codimension $\geq 2$ in $X$ and such that $\mathcal{F}|_ U$ is invertible, see Lemma 31.12.13. Observe that $\text{Cl}(U) = \text{Cl}(X)$ as the Weil divisor class group of $X$ only depends on its field of rational functions and the points of codimension $1$ and their local rings. Thus we can define the Weil divisor class of $\mathcal{F}$ to be the Weil divisor class of $\mathcal{F}|_ U$ in $\text{Cl}(U)$. We omit the verification that this is independent of the choice of $U$.

Denote $\text{Cl}'(X)$ the set of isomorphism classes of rank $1$ coherent reflexive $\mathcal{O}_ X$-modules. The construction above gives a group homorphism

\[ \text{Cl}'(X) \longrightarrow \text{Cl}(X) \]

because for any pair $\mathcal{F}, \mathcal{G}$ of elements of $\text{Cl}'(X)$ we can choose a $U$ which works for both and the assignment (31.27.5.1) sending an invertible module to its Weil divisor class is a homorphism. If $\mathcal{F}$ is in the kernel of this map, then we find that $\mathcal{F}|_ U$ is trivial (Lemma 31.27.6) and hence $\mathcal{F}$ is trivial too by Lemma 31.12.12 and Serre's criterion Properties, Lemma 28.12.5. To finish the proof it suffices to check the map is surjective.

Let $D = \sum n_ Z Z$ be a Weil divisor on $X$. We claim that there is an open $U \subset X$ such that every irreducible component of $X \setminus U$ has codimension $\geq 2$ in $X$ and such that $Z|_ U$ is an effective Cartier divisor for $n_ Z \not= 0$. To prove the claim we may assume $X$ is affine. Then we may assume $D = n_1 Z_1 + \ldots + n_ r Z_ r$ is a finite sum with $Z_1, \ldots , Z_ r$ pairwise distinct. After throwing out $Z_ i \cap Z_ j$ for $i \not= j$ we may assume $Z_1, \ldots , Z_ r$ are pairwise disjoint. This reduces us to the case of a single prime divisor $Z$ on $X$. As $X$ is $(R_1)$ by Properties, Lemma 28.12.5 the local ring $\mathcal{O}_{X, \xi }$ at the generic point $\xi $ of $Z$ is a discrete valuation ring. Let $f \in \mathcal{O}_{X, \xi }$ be a uniformizer. Let $V \subset X$ be an open neighbourhood of $\xi $ such that $f$ is the image of an element $f \in \mathcal{O}_ X(V)$. After shrinking $V$ we may assume that $Z \cap V = V(f)$ scheme theoretically, since this is true in the local ring at $\xi $. In this case taking

\[ U = X \setminus (Z \setminus V) = (X \setminus Z) \cup V \]

gives the desired open, thereby proving the claim.

In order to show that the divisor class of $D$ is in the image, we may write $D = \sum _{n_ Z < 0} n_ Z Z - \sum _{n_ Z > 0} (-n_ Z) Z$. By additivity of the map constructed above, we may and do assume $n_ Z \leq 0$ for all prime divisors $Z$ (this step may be avoided if the reader so desires). Let $U \subset X$ be as in the claim above. If $U$ is quasi-compact, then we write $D|_ U = -n_1 Z_1 - \ldots - n_ r Z_ r$ for pairwise distinct prime divisors $Z_ i$ and $n_ i > 0$ and we consider the invertible $\mathcal{O}_ U$-module

\[ \mathcal{L} = \mathcal{I}_1^{n_1} \ldots \mathcal{I}_ r^{n_ r} \subset \mathcal{O}_ U \]

where $\mathcal{I}_ i$ is the ideal sheaf of $Z_ i$. This is invertible by our choice of $U$ and Lemma 31.13.7. Also $\text{div}_\mathcal {L}(1) = D|_ U$. Since $\mathcal{L} = \mathcal{F}|_ U$ for some rank $1$ coherent reflexive $\mathcal{O}_ X$-module $\mathcal{F}$ by Lemma 31.12.12 we find that $D$ is in the image of our map.

If $U$ is not quasi-compact, then we define $\mathcal{L} \subset \mathcal{O}_ U$ locally by the displayed formula above. The reader shows that the construction glues and finishes the proof exactly as before. Details omitted. $\square$

Lemma 31.29.3. Let $X$ be an integral locally Noetherian normal scheme. Let $\mathcal{F}$ be a rank 1 coherent reflexive $\mathcal{O}_ X$-module. Let $s \in \Gamma (X, \mathcal{F})$. Let

\[ U = \{ x \in X \mid s : \mathcal{O}_{X, x} \to \mathcal{F}_ x \text{ is an isomorphism}\} \]

Then $j : U \to X$ is an open subscheme of $X$ and

\[ j_*\mathcal{O}_ U = \mathop{\mathrm{colim}}\nolimits (\mathcal{O}_ X \xrightarrow {s} \mathcal{F} \xrightarrow {s} \mathcal{F}^{[2]} \xrightarrow {s} \mathcal{F}^{[3]} \xrightarrow {s} \ldots ) \]

where $\mathcal{F}^{[1]} = \mathcal{F}$ and inductively $\mathcal{F}^{[n + 1]} = (\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{F}^{[n]})^{**}$.

Proof. The set $U$ is open by Modules, Lemmas 17.9.4 and 17.12.6. Observe that $j$ is quasi-compact by Properties, Lemma 28.5.3. To prove the final statement it suffices to show for every quasi-compact open $W \subset X$ there is an isomorphism

\[ \mathop{\mathrm{colim}}\nolimits \Gamma (W, \mathcal{F}^{[n]}) \longrightarrow \Gamma (U \cap W, \mathcal{O}_ U) \]

of $\mathcal{O}_ X(W)$-modules compatible with restriction maps. We will omit the verification of compatibilities. After replacing $X$ by $W$ and rewriting the above in terms of homs, we see that it suffices to construct an isomorphism

\[ \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{O}_ X, \mathcal{F}^{[n]}) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_ U, \mathcal{O}_ U) \]

Choose an open $V \subset X$ such that every irreducible component of $X \setminus V$ has codimension $\geq 2$ in $X$ and such that $\mathcal{F}|_ V$ is invertible, see Lemma 31.12.13. Then restriction defines an equivalence of categories between rank $1$ coherent reflexive modules on $X$ and $V$ and between rank $1$ coherent reflexive modules on $U$ and $V \cap U$. See Lemma 31.12.12 and Serre's criterion Properties, Lemma 28.12.5. Thus it suffices to construct an isomorphism

\[ \mathop{\mathrm{colim}}\nolimits \Gamma (V, (\mathcal{F}|_ V)^{\otimes n}) \longrightarrow \Gamma (V \cap U, \mathcal{O}_ U) \]

Since $\mathcal{F}|_ V$ is invertible and since $U \cap V$ is equal to the set of points where $s|_ V$ generates this invertible module, this is a special case of Properties, Lemma 28.17.2 (there is an explicit formula for the map as well). $\square$

Lemma 31.29.4. Assumptions and notation as in Lemma 31.29.3. If $s$ is nonzero, then every irreducible component of $X \setminus U$ has codimension $1$ in $X$.

Proof. Let $\xi \in X$ be a generic point of an irreducible component $Z$ of $X \setminus U$. After replacing $X$ by an open neighbourhood of $\xi $ we may assume that $Z = X \setminus U$ is irreducible. Since $s : \mathcal{O}_ U \to \mathcal{F}|_ U$ is an isomorphism, if the codimension of $Z$ in $X$ is $\geq 2$, then $s : \mathcal{O}_ X \to \mathcal{F}$ is an isomorphism by Lemma 31.12.12 and Serre's criterion Properties, Lemma 28.12.5. This would mean that $Z = \emptyset $, a contradiction. $\square$

Remark 31.29.5. Let $A$ be a Noetherian normal domain. Let $M$ be a rank $1$ finite reflexive $A$-module. Let $s \in M$ be nonzero. Let $\mathfrak p_1, \ldots , \mathfrak p_ r$ be the height $1$ primes of $A$ in the support of $M/As$. Then the open $U$ of Lemma 31.29.3 is

\[ U = \mathop{\mathrm{Spec}}(A) \setminus \left(V(\mathfrak p_1) \cup \ldots \cup V(\mathfrak p_ r)\right) \]

by Lemma 31.29.4. Moreover, if $M^{[n]}$ denotes the reflexive hull of $M \otimes _ A \ldots \otimes _ A M$ ($n$-factors), then

\[ \Gamma (U, \mathcal{O}_ U) = \mathop{\mathrm{colim}}\nolimits M^{[n]} \]

according to Lemma 31.29.3.

Lemma 31.29.6. Assumptions and notation as in Lemma 31.29.3. The following are equivalent

  1. the inclusion morphism $j : U \to X$ is affine, and

  2. for every $x \in X \setminus U$ there is an $n > 0$ such that $s^ n \in \mathfrak m_ x \mathcal{F}^{[n]}_ x$.

Proof. Assume (1). Then for $x \in X \setminus U$ the inverse image $U_ x$ of $U$ under the canonical morphism $f_ x : \mathop{\mathrm{Spec}}(\mathcal{O}_{X, x}) \to X$ is affine and does not contain $x$. Thus $\mathfrak m_ x \Gamma (U_ x, \mathcal{O}_{U_ x})$ is the unit ideal. In particular, we see that we can write

\[ 1 = \sum f_ i g_ i \]

with $f_ i \in \mathfrak m_ x$ and $g_ i \in \Gamma (U_ x, \mathcal{O}_{U_ x})$. By Lemma 31.29.3 we have $\Gamma (U_ x, \mathcal{O}_{U_ x}) = \mathop{\mathrm{colim}}\nolimits \mathcal{F}^{[n]}_ x$ with transition maps given by multiplication by $s$. Hence for some $n > 0$ we have

\[ s^ n = \sum f_ i t_ i \]

for some $t_ i = s^ ng_ i \in \mathcal{F}^{[n]}_ x$. Thus (2) holds.

Conversely, assume that (2) holds. To prove $j$ is affine is local on $X$, see Morphisms, Lemma 29.11.3. Thus we may and do assume that $X$ is affine. Our goal is to show that $U$ is affine. By Cohomology of Schemes, Lemma 30.17.8 it suffices to show that $H^ p(U, \mathcal{O}_ U) = 0$ for $p > 0$. Since $H^ p(U, \mathcal{O}_ U) = H^0(X, R^ pj_*\mathcal{O}_ U)$ (Cohomology of Schemes, Lemma 30.4.6) and since $R^ pj_*\mathcal{O}_ U$ is quasi-coherent (Cohomology of Schemes, Lemma 30.4.5) it is enough to show the stalk $(R^ pj_*\mathcal{O}_ U)_ x$ at a point $x \in X$ is zero. Consider the base change diagram

\[ \xymatrix{ U_ x \ar[d]_{j_ x} \ar[r] & U \ar[d]^ j \\ \mathop{\mathrm{Spec}}(\mathcal{O}_{X, x}) \ar[r] & X } \]

By Cohomology of Schemes, Lemma 30.5.2 we have $(R^ pj_*\mathcal{O}_ U)_ x = R^ pj_{x, *}\mathcal{O}_{U_ x}$. Hence we may assume $X$ is local with closed point $x$ and we have to show $U$ is affine (because this is equivalent to the desired vanishing by the reference given above). In particular $d = \dim (X)$ is finite (Algebra, Proposition 10.60.9). If $x \in U$, then $U = X$ and the result is clear. If $d = 0$ and $x \not\in U$, then $U = \emptyset $ and the result is clear. Now assume $d > 0$ and $x \not\in U$. Since $j_*\mathcal{O}_ U = \mathop{\mathrm{colim}}\nolimits \mathcal{F}^{[n]}$ our assumption means that we can write

\[ 1 = \sum f_ i g_ i \]

for some $n > 0$, $f_ i \in \mathfrak m_ x$, and $g_ i \in \mathcal{O}(U)$. By induction on $d$ we know that $D(f_ i) \cap U$ is affine for all $i$: going through the whole argument just given with $X$ replaced by $D(f_ i)$ we end up with Noetherian local rings whose dimension is strictly smaller than $d$. Hence $U$ is affine by Properties, Lemma 28.27.3 as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EBK. Beware of the difference between the letter 'O' and the digit '0'.