Lemma 76.52.14. Let $A$ be a ring. Let $X$ be an algebraic space separated, of finite presentation, and flat over $A$. Let $K \in D_\mathit{QCoh}(\mathcal{O}_ X)$. If $R \Gamma (X, E \otimes ^\mathbf {L} K)$ is perfect in $D(A)$ for every perfect $E \in D(\mathcal{O}_ X)$, then $K$ is $\mathop{\mathrm{Spec}}(A)$-perfect.

**Proof.**
By Lemma 76.51.5, $K$ is pseudo-coherent relative to $A$. By Lemma 76.45.4, $K$ is pseudo-coherent in $D(\mathcal{O}_ X)$. By Derived Categories of Spaces, Proposition 75.29.4 we see that $K$ is in $D^-(\mathcal{O}_ X)$. Let $\mathfrak {p}$ be a prime ideal of $A$ and denote $i : Y \to X$ the inclusion of the scheme theoretic fibre over $\mathfrak {p}$, i.e., $Y$ is a scheme over $\kappa (\mathfrak p)$. By Lemma 76.52.13, we will be done if we can show $Li^*(K)$ is bounded below. Let $G \in D_{perf} (\mathcal{O}_ X)$ be a perfect complex which generates $D_\mathit{QCoh}(\mathcal{O}_ X)$, see Derived Categories of Spaces, Theorem 75.15.4. We have

The first equality uses that $Li^*$ preserves perfect objects and duals and Cohomology on Sites, Lemma 21.48.4; we omit some details. The second equality follows from Derived Categories of Spaces, Lemma 75.20.4 as $X$ is flat over $A$. It follows from our hypothesis that this is a perfect object of $D(\kappa (\mathfrak {p}))$. The object $Li^*(G) \in D_{perf}(\mathcal{O}_ Y)$ generates $D_\mathit{QCoh}(\mathcal{O}_ Y)$ by Derived Categories of Spaces, Remark 75.15.5. Hence Derived Categories of Spaces, Proposition 75.29.4 now implies that $Li^*(K)$ is bounded below and we win. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)