The Stacks project

Lemma 63.14.4. Let $Y$ be an affine scheme. Let $\Lambda $ be a Noetherian ring. Let $\mathcal{F}$ be a constructible sheaf of $\Lambda $-modules on $\mathbf{A}^1_ Y$ which is torsion. Then $Rf_!\mathcal{F}$ has constructible cohomology sheaves where $f : \mathbf{A}^1_ Y \to Y$ is the structure morphism.

Proof. Say $\mathcal{F}$ is annihilated by $n > 0$. Then we can replace $\Lambda $ by $\Lambda /n\Lambda $ without changing $Rf_!\mathcal{F}$. Thus we may and do assume $\Lambda $ is a torsion ring.

Say $Y = \mathop{\mathrm{Spec}}(R)$. Then, if we write $R = \bigcup R_ i$ as the union of its finite type $\mathbf{Z}$-subalgebras, we can find an $i$ such that $\mathcal{F}$ is the pullback of a constructible sheaf of $\Lambda $-modules on $\mathbf{A}^1_{R_ i}$, see Étale Cohomology, Lemma 59.73.10. Hence we may assume $Y$ is a Noetherian scheme of finite dimension.

Assume $Y$ is a Noetherian scheme of finite dimension $d = \dim (Y)$ and $\Lambda $ is torsion. We will prove the result by induction on $d$.

Base case. If $d = 0$, then the only thing to show is that the stalks of $R^ qf_!\mathcal{F}$ are finite $\Lambda $-modules. If $\overline{y}$ is a geometric point of $Y$, then we have $(R^ qf_!\mathcal{F})_{\overline{y}} = H^ q_ c(X_{\overline{y}}, \mathcal{F})$ by Lemma 63.12.2. This is a finite $\Lambda $-module by Lemma 63.12.4.

Induction step. It suffices to find a dense open $V \subset Y$ such that $Rf_!\mathcal{F}|_ V$ has constructible cohomology sheaves. Namely, the restriction of $Rf_!\mathcal{F}$ to the complement $Y \setminus V$ will have constructible cohomology sheaves by induction and the fact that formation of $Rf_!\mathcal{F}$ commutes with all base change (Lemma 63.9.4). By definition of constructible sheaves of $\Lambda $-modules, there is a dense open subscheme $U \subset \mathbf{A}^1_ Y$ such that $\mathcal{F}|_ U$ is a finite type, locally constant sheaf of $\Lambda $-modules. Denote $Z \subset \mathbf{A}^1_ Y$ the complement (viewed as a reduced closed subscheme). Note that $U$ contains all the generic points of the fibres of $\mathbf{A}^1_ Y \to Y$ over the generic points $\xi _1, \ldots , \xi _ n$ of the irreducible components of $Y$. Hence $Z \to Y$ has finite fibres over $\xi _1, \ldots , \xi _ n$. After replacing $Y$ by a dense open (which is allowed), we may assume $Z \to Y$ is finite, see Morphisms, Lemma 29.51.1. By the distinguished triangle of Lemma 63.10.5 and the result for $Z \to Y$ (Lemma 63.14.1) we reduce to showing that $R(U \to Y)_!\mathcal{F}$ has constructible cohomology sheaves. This is Lemma 63.14.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GKZ. Beware of the difference between the letter 'O' and the digit '0'.