The Stacks project

Lemma 103.13.5. Let $\mathcal{X}$ be a quasi-compact and quasi-separated algebraic stack. Let $I$ be a directed set and let $(\mathcal{F}_ i, \varphi _{ii'})$ be a system over $I$ of $\mathcal{O}_\mathcal {X}$-modules. Let $\mathcal{G}$ be an $\mathcal{O}_\mathcal {X}$-module of finite presentation. Then we have

\[ \mathop{\mathrm{colim}}\nolimits _ i \mathop{\mathrm{Hom}}\nolimits _\mathcal {X}(\mathcal{G}, \mathcal{F}_ i) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {X}(\mathcal{G}, \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i). \]

In particular, $\mathop{\mathrm{Hom}}\nolimits _\mathcal {X}(\mathcal{G}, -)$ commutes with filtered colimits in $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$.

Proof. The displayed equality is a special case of Modules on Sites, Lemma 18.27.12. In order to apply it, we need to check the hypotheses of Sites, Lemma 7.17.8 part (4) for the site $\mathcal{X}_{fppf}$. In order to do this, we will check hypotheses (2)(a), (2)(b), (2)(c) of Sites, Remark 7.17.9. Namely, let $\mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_{fppf})$ be the set of objects lying over affine schemes. In other words, an element of $\mathcal{B}$ is a morphism $x : U \to \mathcal{X}$ with $U$ affine. We check each of the conditions (2)(a), (2)(b), and (2)(c) of the remark in turn:

  1. Since $\mathcal{X}$ is quasi-compact, there exists a surjetive and smooth morphism $x : U \to \mathcal{X}$ with $U$ affine (Properties of Stacks, Lemma 100.6.2). Then $h_ x^\# \to *$ is a surjective map of sheaves on $\mathcal{X}_{fppf}$.

  2. Since coverings in $\mathcal{X}_{fppf}$ are fppf coverings, we see that every covering of $U \in \mathcal{B}$ is refined by a finite affine fppf covering, see Topologies, Lemma 34.7.4.

  3. Let $x : U \to \mathcal{X}$ and $x' : U' \to \mathcal{X}$ be in $\mathcal{B}$. The product $h_ x^\# \times h_{x'}^\# $ in $\mathop{\mathit{Sh}}\nolimits (\mathcal{X}_{fppf})$ is equal to the sheaf on $\mathcal{X}_{fppf}$ determined by the algebraic space $W = U \times _{x, \mathcal{X}, x'} U'$ over $\mathcal{X}$: for an object $y : V \to \mathcal{X}$ of $\mathcal{X}_{fppf}$ we have $(h_ x^\# \times h_{x'}^\# )(y) = \{ f : V \to W \mid y = x \circ \text{pr}_1 \circ f = x' \circ \text{pr}_2 \circ f\} $. The algebraic space $W$ is quasi-compact because $\mathcal{X}$ is quasi-separated, see Morphisms of Stacks, Lemma 101.7.8 for example. Hence we can choose an affine scheme $U''$ and a surjective étale morphism $U'' \to W$. Denote $x'' : U'' \to \mathcal{X}$ the composition of $U'' \to W$ and $W \to \mathcal{X}$. Then $h_{x''}^\# \to h_ x^\# \times h_{x'}^\# $ is surjective as desired.

For the final statement, observe that the inclusion functor $\mathit{QCoh}(\mathcal{O}_ X) \to \textit{Mod}(\mathcal{O}_ X)$ commutes with colimits and that finitely presented modules are quasi-coherent. See Sheaves on Stacks, Lemma 96.15.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GQZ. Beware of the difference between the letter 'O' and the digit '0'.