Proof.
Let \kappa be an upper bound for the following set of cardinals:
|\coprod _ V j_{U!}\mathcal{O}_ U(V)| for all U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}),
the cardinals \kappa (\mathcal{O}(V) \to \mathcal{O}(U)) found in More on Algebra, Lemma 15.102.5 for all morphisms U \to V in \mathcal{C},
the cardinal found in Lemma 21.43.7.
We claim that for any complex \mathcal{F}^\bullet representing an object of \mathit{QC}(\mathcal{O}) and any subcomplex \mathcal{S}^\bullet \subset \mathcal{F}^\bullet with |\mathcal{S}^\bullet | \leq \kappa there exists a subcomplex \mathcal{H}^\bullet of \mathcal{F}^\bullet containing \mathcal{S}^\bullet such that \mathcal{H}^\bullet represents an object of \mathit{QC}(\mathcal{O}) and such that |\mathcal{H}^\bullet | \leq \kappa . In the next two paragraphs we show that the claim implies the lemma.
As in (1) let K be a nonzero object of \mathit{QC}(\mathcal{O}). Say K is represented by the complex of \mathcal{O}-modules \mathcal{F}^\bullet . Then H^ i(\mathcal{F}^\bullet ) is nonzero for some i. Hence there exists an object U of \mathcal{C} and a section s \in \mathcal{F}^ i(U) with d(s) = 0 which determines a nonzero section of H^ i(\mathcal{F}^\bullet ) over U. Then the image of s : j_{U!}\mathcal{O}_ U[-i] \to \mathcal{F}^\bullet is a subcomplex \mathcal{S}^\bullet \subset \mathcal{F}^\bullet with |\mathcal{S}^\bullet | \leq \kappa . Applying the claim we get \mathcal{H}^\bullet \to \mathcal{F}^\bullet in \mathit{QC}(\mathcal{O}) nonzero with |\mathcal{H}^\bullet | \leq \kappa . Thus (1) holds.
Let \alpha : E \to \bigoplus K_ n be as in (2). Choose any complexes \mathcal{K}_ n^\bullet representing K_ n. Then \bigoplus \mathcal{K}_ n^\bullet represents \bigoplus K_ n. By the construction of the derived category we can represent E by a complex \mathcal{E}^\bullet such that \alpha is represented by a morphism a : \mathcal{E}^\bullet \to \bigoplus \mathcal{K}_ n^\bullet of complexes. By Lemma 21.43.7 and our choice of \kappa above we may assume |\mathcal{E}^\bullet | \leq \kappa . By the claim we get subcomplexes \mathcal{E}_ n^\bullet \subset \mathcal{K}_ n^\bullet representing objects E_ n of \mathit{QC}(\mathcal{O}) with |E_ n| \leq \kappa containing the image of a_ n : \mathcal{E}^\bullet \to \mathcal{K}_ n^\bullet as desired.
Proof of the claim. Let \mathcal{F}^\bullet be a complex representing an object of \mathit{QC}(\mathcal{O}) and let \mathcal{S}^\bullet \subset \mathcal{F}^\bullet be a subcomplex of size \leq \kappa . We are going to inductively construct subcomplexes
\mathcal{S}^\bullet = \mathcal{S}_0^\bullet \subset \mathcal{S}_1^\bullet \subset \mathcal{S}_2^\bullet \subset \ldots \subset \mathcal{F}^\bullet
of size \leq \kappa such that for every morphism f : U \to V of \mathcal{C} and every i \in \mathbf{Z}
the kernel of the arrow H^ i(\mathcal{S}_ n^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U)) \to H^ i(\mathcal{S}_ n^\bullet (U)) maps to zero in H^ i(\mathcal{S}_{n + 1}^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U)),
the image of the arrow H^ i(\mathcal{S}_ n^\bullet (U)) \to H^ i(\mathcal{S}_{n + 1}^\bullet (U)) is contained in the image of H^ i(\mathcal{S}_{n + 1}^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U)) \to H^ i(\mathcal{S}_{n + 1}^\bullet (U)),
Once this is done we can set \mathcal{H}^\bullet = \bigcup \mathcal{S}_ n^\bullet . Namely, since derived tensor product and taking cohomology of complexes of modules over rings commute with filtered colimits, the conditions (1) and (2) together will guarantee that
\mathcal{H}^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U) \longrightarrow \mathcal{H}^\bullet (U)
is an isomorphism on cohomology in all degrees and hence an isomorphism in D(\mathcal{O}(U)) for all f : U \to V in \mathcal{C}. Hence \mathcal{H}^\bullet represents an object of \mathit{QC}(\mathcal{O}) as desired.
Construction of \mathcal{S}_{n + 1} given \mathcal{S}_ n. For every morphism f : U \to V of \mathcal{C} we consider the commutative diagram
\xymatrix{ \mathcal{S}_ n^\bullet (V) \ar[r] \ar[d] & \mathcal{S}_ n^\bullet (U) \ar[d] \\ \mathcal{F}^\bullet (V) \ar[r] & \mathcal{F}^\bullet (U) }
This is a diagram as in More on Algebra, Lemma 15.102.5 for the ring map \mathcal{O}(V) \to \mathcal{O}(U), i.e., the bottom row induces an isomorphism
\mathcal{F}^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U) \longrightarrow \mathcal{F}^\bullet (U)
in D(\mathcal{O}(U)). Thus we may choose subcomplexes
\mathcal{S}_ n^\bullet (V) \subset M^\bullet _ f \subset \mathcal{F}^\bullet (V) \quad \text{and}\quad \mathcal{S}_ n^\bullet (U) \subset N^\bullet _ f \subset \mathcal{F}^\bullet (U)
as in More on Algebra, Lemma 15.102.5 and in particular we see that |N^ i_ f|, |M^ i_ f| \leq \kappa . Next, we apply Lemma 21.43.6 using the subsets
\mathcal{S}_ n^ i(U) \amalg \coprod \nolimits _{f : U \to V} N^ i_ f \amalg \coprod \nolimits _{g : W \to U} M^ i_ g \subset \mathcal{F}^ i(U)
to find a subcomplex
\mathcal{S}_ n^\bullet \subset \mathcal{S}_{n + 1}^\bullet \subset \mathcal{F}^\bullet
with containing those subsets and such that |\mathcal{S}_{n + 1}^\bullet | \leq \kappa . Conditions (1) and (2) hold because the corresponding statements hold for \mathcal{S}_ n^\bullet (V) \subset M^\bullet _ f and \mathcal{S}_ n^\bullet (U) \subset N^\bullet _ f by the construction in More on Algebra, Lemma 15.102.5. Thus the proof is complete.
\square
Comments (0)