Processing math: 100%

The Stacks project

Lemma 21.43.8. In the situation above, there exists a cardinal \kappa with the following properties:

  1. for every nonzero object K of \mathit{QC}(\mathcal{O}) there exists a nonzero morphism E \to K of \mathit{QC}(\mathcal{O}) such that |E| \leq \kappa ,

  2. for every morphism \alpha : E \to \bigoplus _ n K_ n of \mathit{QC}(\mathcal{O}) such that |E| \leq \kappa , there exist morphisms E_ n \to K_ n in \mathit{QC}(\mathcal{O}) with |E_ n| \leq \kappa such that \alpha factors through \bigoplus E_ n \to \bigoplus K_ n.

Proof. Let \kappa be an upper bound for the following set of cardinals:

  1. |\coprod _ V j_{U!}\mathcal{O}_ U(V)| for all U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}),

  2. the cardinals \kappa (\mathcal{O}(V) \to \mathcal{O}(U)) found in More on Algebra, Lemma 15.102.5 for all morphisms U \to V in \mathcal{C},

  3. the cardinal found in Lemma 21.43.7.

We claim that for any complex \mathcal{F}^\bullet representing an object of \mathit{QC}(\mathcal{O}) and any subcomplex \mathcal{S}^\bullet \subset \mathcal{F}^\bullet with |\mathcal{S}^\bullet | \leq \kappa there exists a subcomplex \mathcal{H}^\bullet of \mathcal{F}^\bullet containing \mathcal{S}^\bullet such that \mathcal{H}^\bullet represents an object of \mathit{QC}(\mathcal{O}) and such that |\mathcal{H}^\bullet | \leq \kappa . In the next two paragraphs we show that the claim implies the lemma.

As in (1) let K be a nonzero object of \mathit{QC}(\mathcal{O}). Say K is represented by the complex of \mathcal{O}-modules \mathcal{F}^\bullet . Then H^ i(\mathcal{F}^\bullet ) is nonzero for some i. Hence there exists an object U of \mathcal{C} and a section s \in \mathcal{F}^ i(U) with d(s) = 0 which determines a nonzero section of H^ i(\mathcal{F}^\bullet ) over U. Then the image of s : j_{U!}\mathcal{O}_ U[-i] \to \mathcal{F}^\bullet is a subcomplex \mathcal{S}^\bullet \subset \mathcal{F}^\bullet with |\mathcal{S}^\bullet | \leq \kappa . Applying the claim we get \mathcal{H}^\bullet \to \mathcal{F}^\bullet in \mathit{QC}(\mathcal{O}) nonzero with |\mathcal{H}^\bullet | \leq \kappa . Thus (1) holds.

Let \alpha : E \to \bigoplus K_ n be as in (2). Choose any complexes \mathcal{K}_ n^\bullet representing K_ n. Then \bigoplus \mathcal{K}_ n^\bullet represents \bigoplus K_ n. By the construction of the derived category we can represent E by a complex \mathcal{E}^\bullet such that \alpha is represented by a morphism a : \mathcal{E}^\bullet \to \bigoplus \mathcal{K}_ n^\bullet of complexes. By Lemma 21.43.7 and our choice of \kappa above we may assume |\mathcal{E}^\bullet | \leq \kappa . By the claim we get subcomplexes \mathcal{E}_ n^\bullet \subset \mathcal{K}_ n^\bullet representing objects E_ n of \mathit{QC}(\mathcal{O}) with |E_ n| \leq \kappa containing the image of a_ n : \mathcal{E}^\bullet \to \mathcal{K}_ n^\bullet as desired.

Proof of the claim. Let \mathcal{F}^\bullet be a complex representing an object of \mathit{QC}(\mathcal{O}) and let \mathcal{S}^\bullet \subset \mathcal{F}^\bullet be a subcomplex of size \leq \kappa . We are going to inductively construct subcomplexes

\mathcal{S}^\bullet = \mathcal{S}_0^\bullet \subset \mathcal{S}_1^\bullet \subset \mathcal{S}_2^\bullet \subset \ldots \subset \mathcal{F}^\bullet

of size \leq \kappa such that for every morphism f : U \to V of \mathcal{C} and every i \in \mathbf{Z}

  1. the kernel of the arrow H^ i(\mathcal{S}_ n^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U)) \to H^ i(\mathcal{S}_ n^\bullet (U)) maps to zero in H^ i(\mathcal{S}_{n + 1}^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U)),

  2. the image of the arrow H^ i(\mathcal{S}_ n^\bullet (U)) \to H^ i(\mathcal{S}_{n + 1}^\bullet (U)) is contained in the image of H^ i(\mathcal{S}_{n + 1}^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U)) \to H^ i(\mathcal{S}_{n + 1}^\bullet (U)),

Once this is done we can set \mathcal{H}^\bullet = \bigcup \mathcal{S}_ n^\bullet . Namely, since derived tensor product and taking cohomology of complexes of modules over rings commute with filtered colimits, the conditions (1) and (2) together will guarantee that

\mathcal{H}^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U) \longrightarrow \mathcal{H}^\bullet (U)

is an isomorphism on cohomology in all degrees and hence an isomorphism in D(\mathcal{O}(U)) for all f : U \to V in \mathcal{C}. Hence \mathcal{H}^\bullet represents an object of \mathit{QC}(\mathcal{O}) as desired.

Construction of \mathcal{S}_{n + 1} given \mathcal{S}_ n. For every morphism f : U \to V of \mathcal{C} we consider the commutative diagram

\xymatrix{ \mathcal{S}_ n^\bullet (V) \ar[r] \ar[d] & \mathcal{S}_ n^\bullet (U) \ar[d] \\ \mathcal{F}^\bullet (V) \ar[r] & \mathcal{F}^\bullet (U) }

This is a diagram as in More on Algebra, Lemma 15.102.5 for the ring map \mathcal{O}(V) \to \mathcal{O}(U), i.e., the bottom row induces an isomorphism

\mathcal{F}^\bullet (V) \otimes _{\mathcal{O}(V)}^\mathbf {L} \mathcal{O}(U) \longrightarrow \mathcal{F}^\bullet (U)

in D(\mathcal{O}(U)). Thus we may choose subcomplexes

\mathcal{S}_ n^\bullet (V) \subset M^\bullet _ f \subset \mathcal{F}^\bullet (V) \quad \text{and}\quad \mathcal{S}_ n^\bullet (U) \subset N^\bullet _ f \subset \mathcal{F}^\bullet (U)

as in More on Algebra, Lemma 15.102.5 and in particular we see that |N^ i_ f|, |M^ i_ f| \leq \kappa . Next, we apply Lemma 21.43.6 using the subsets

\mathcal{S}_ n^ i(U) \amalg \coprod \nolimits _{f : U \to V} N^ i_ f \amalg \coprod \nolimits _{g : W \to U} M^ i_ g \subset \mathcal{F}^ i(U)

to find a subcomplex

\mathcal{S}_ n^\bullet \subset \mathcal{S}_{n + 1}^\bullet \subset \mathcal{F}^\bullet

with containing those subsets and such that |\mathcal{S}_{n + 1}^\bullet | \leq \kappa . Conditions (1) and (2) hold because the corresponding statements hold for \mathcal{S}_ n^\bullet (V) \subset M^\bullet _ f and \mathcal{S}_ n^\bullet (U) \subset N^\bullet _ f by the construction in More on Algebra, Lemma 15.102.5. Thus the proof is complete. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.