The Stacks project

Lemma 21.33.5. Consider a commutative square

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{g'} \ar[d]_{f'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}, \mathcal{O}_{\mathcal{C}}) \ar[d]^ f \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^ g & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_{\mathcal{D}}) } \]

of ringed topoi. Let $K, L$ in $D(\mathcal{O}_{\mathcal{C}})$. The relative cup product is compatible with the square in the sense that the diagram

\[ \xymatrix{ Lg^*(Rf_*K \otimes _{\mathcal{O}_{\mathcal{D}}}^\mathbf {L} Rf_*L) \ar[r] \ar@{=}[d] & Lg^*(Rf_*(K \otimes _{\mathcal{O}_{\mathcal{C}}}^\mathbf {L} L)) \ar[d] \\ Lg^*Rf_*K \otimes _{\mathcal{O}_{\mathcal{D}'}}^\mathbf {L} Lg^*Rf_*L \ar[d] & R(f')_*L(g')^*(K \otimes _{\mathcal{O}_{\mathcal{C}}}^\mathbf {L} L) \ar@{=}[d] \\ R(f')_*(L(g')^*K \otimes _{\mathcal{O}_{\mathcal{D}'}} R(f')_*(L(g')^*L \ar[r] & R(f')_*(L(g')^*K \otimes _{\mathcal{O}_{\mathcal{C}'}}^\mathbf {L} L(g')^*L) } \]

is commutative in $D(\mathcal{O}_{\mathcal{D}'})$. The horizontal arrows are given by the relative cup product (Remark 21.19.7) and the vertical arrows are given by the base change map (Remark 21.19.3) and Lemma 21.18.4.

Proof. Omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H9A. Beware of the difference between the letter 'O' and the digit '0'.