Lemma 29.13.5. The base change of a quasi-affine morphism is quasi-affine.
Proof. Let f : X \to S be a quasi-affine morphism. By Lemma 29.13.3 above we can find a quasi-coherent sheaf of \mathcal{O}_ S-algebras \mathcal{A} and a quasi-compact open immersion X \to \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) over S. Let g : S' \to S be any morphism. Denote f' : X_{S'} = S' \times _ S X \to S' the base change of f. Since the base change of a quasi-compact open immersion is a quasi-compact open immersion we see that X_{S'} \to \underline{\mathop{\mathrm{Spec}}}_{S'}(g^*\mathcal{A}) is a quasi-compact open immersion (we have used Schemes, Lemmas 26.19.3 and 26.18.2 and Constructions, Lemma 27.4.6). By Lemma 29.13.3 again we conclude that X_{S'} \to S' is quasi-affine. \square
Comments (0)