## 29.13 Quasi-affine morphisms

Recall that a scheme $X$ is called quasi-affine if it is quasi-compact and isomorphic to an open subscheme of an affine scheme, see Properties, Definition 28.18.1.

Definition 29.13.1. A morphism of schemes $f : X \to S$ is called quasi-affine if the inverse image of every affine open of $S$ is a quasi-affine scheme.

Lemma 29.13.2. A quasi-affine morphism is separated and quasi-compact.

Proof. Let $f : X \to S$ be quasi-affine. Quasi-compactness is immediate from Schemes, Lemma 26.19.2. Let $U \subset S$ be an affine open. If we can show that $f^{-1}(U)$ is a separated scheme, then $f$ is separated (Schemes, Lemma 26.21.7 shows that being separated is local on the base). By assumption $f^{-1}(U)$ is isomorphic to an open subscheme of an affine scheme. An affine scheme is separated and hence every open subscheme of an affine scheme is separated as desired. $\square$

Lemma 29.13.3. Let $f : X \to S$ be a morphism of schemes. The following are equivalent

1. The morphism $f$ is quasi-affine.

2. There exists an affine open covering $S = \bigcup W_ j$ such that each $f^{-1}(W_ j)$ is quasi-affine.

3. There exists a quasi-coherent sheaf of $\mathcal{O}_ S$-algebras $\mathcal{A}$ and a quasi-compact open immersion

$\xymatrix{ X \ar[rr] \ar[rd] & & \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \ar[dl] \\ & S & }$

over $S$.

4. Same as in (3) but with $\mathcal{A} = f_*\mathcal{O}_ X$ and the horizontal arrow the canonical morphism of Constructions, Lemma 27.4.7.

Proof. It is obvious that (1) implies (2) and that (4) implies (3).

Assume $S = \bigcup _{j \in J} W_ j$ is an affine open covering such that each $f^{-1}(W_ j)$ is quasi-affine. By Schemes, Lemma 26.19.2 we see that $f$ is quasi-compact. By Schemes, Lemma 26.21.6 we see the morphism $f$ is quasi-separated. Hence by Schemes, Lemma 26.24.1 the sheaf $\mathcal{A} = f_*\mathcal{O}_ X$ is a quasi-coherent sheaf of $\mathcal{O}_ X$-algebras. Thus we have the scheme $g : Y = \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to S$ over $S$. The identity map $\text{id} : \mathcal{A} = f_*\mathcal{O}_ X \to f_*\mathcal{O}_ X$ provides, via the definition of the relative spectrum, a morphism $can : X \to Y$ over $S$, see Constructions, Lemma 27.4.7. By assumption, the lemma just cited, and Properties, Lemma 28.18.4 the restriction $can|_{f^{-1}(W_ j)} : f^{-1}(W_ j) \to g^{-1}(W_ j)$ is a quasi-compact open immersion. Thus $can$ is a quasi-compact open immersion. We have shown that (2) implies (4).

Assume (3). Choose any affine open $U \subset S$. By Constructions, Lemma 27.4.6 we see that the inverse image of $U$ in the relative spectrum is affine. Hence we conclude that $f^{-1}(U)$ is quasi-affine (note that quasi-compactness is encoded in (3) as well). Thus (3) implies (1). $\square$

Lemma 29.13.4. The composition of quasi-affine morphisms is quasi-affine.

Proof. Let $f : X \to Y$ and $g : Y \to Z$ be quasi-affine morphisms. Let $U \subset Z$ be affine open. Then $g^{-1}(U)$ is quasi-affine by assumption on $g$. Let $j : g^{-1}(U) \to V$ be a quasi-compact open immersion into an affine scheme $V$. By Lemma 29.13.3 above we see that $f^{-1}(g^{-1}(U))$ is a quasi-compact open subscheme of the relative spectrum $\underline{\mathop{\mathrm{Spec}}}_{g^{-1}(U)}(\mathcal{A})$ for some quasi-coherent sheaf of $\mathcal{O}_{g^{-1}(U)}$-algebras $\mathcal{A}$. By Schemes, Lemma 26.24.1 the sheaf $\mathcal{A}' = j_*\mathcal{A}$ is a quasi-coherent sheaf of $\mathcal{O}_ V$-algebras with the property that $j^*\mathcal{A}' = \mathcal{A}$. Hence we get a commutative diagram

$\xymatrix{ f^{-1}(g^{-1}(U)) \ar[r] & \underline{\mathop{\mathrm{Spec}}}_{g^{-1}(U)}(\mathcal{A}) \ar[r] \ar[d] & \underline{\mathop{\mathrm{Spec}}}_ V(\mathcal{A}') \ar[d] \\ & g^{-1}(U) \ar[r]^ j & V }$

with the square being a fibre square, see Constructions, Lemma 27.4.6. Note that the upper right corner is an affine scheme. Hence $(g \circ f)^{-1}(U)$ is quasi-affine. $\square$

Lemma 29.13.5. The base change of a quasi-affine morphism is quasi-affine.

Proof. Let $f : X \to S$ be a quasi-affine morphism. By Lemma 29.13.3 above we can find a quasi-coherent sheaf of $\mathcal{O}_ S$-algebras $\mathcal{A}$ and a quasi-compact open immersion $X \to \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})$ over $S$. Let $g : S' \to S$ be any morphism. Denote $f' : X_{S'} = S' \times _ S X \to S'$ the base change of $f$. Since the base change of a quasi-compact open immersion is a quasi-compact open immersion we see that $X_{S'} \to \underline{\mathop{\mathrm{Spec}}}_{S'}(g^*\mathcal{A})$ is a quasi-compact open immersion (we have used Schemes, Lemmas 26.19.3 and 26.18.2 and Constructions, Lemma 27.4.6). By Lemma 29.13.3 again we conclude that $X_{S'} \to S'$ is quasi-affine. $\square$

Proof. Let $X \to S$ be a quasi-compact immersion. We have to show the inverse image of every affine open is quasi-affine. Hence, assuming $S$ is an affine scheme, we have to show $X$ is quasi-affine. By Lemma 29.7.7 the morphism $X \to S$ factors as $X \to Z \to S$ where $Z$ is a closed subscheme of $S$ and $X \subset Z$ is a quasi-compact open. Since $S$ is affine Lemma 29.2.1 implies $Z$ is affine. Hence we win. $\square$

Lemma 29.13.7. Let $S$ be a scheme. Let $X$ be an affine scheme. A morphism $f : X \to S$ is quasi-affine if and only if it is quasi-compact. In particular any morphism from an affine scheme to a quasi-separated scheme is quasi-affine.

Proof. Let $V \subset S$ be an affine open. Then $f^{-1}(V)$ is an open subscheme of the affine scheme $X$, hence quasi-affine if and only if it is quasi-compact. This proves the first assertion. The quasi-compactness of any $f : X \to S$ where $X$ is affine and $S$ quasi-separated follows from Schemes, Lemma 26.21.14 applied to $X \to S \to \mathop{\mathrm{Spec}}(\mathbf{Z})$. $\square$

Lemma 29.13.8. Suppose $g : X \to Y$ is a morphism of schemes over $S$. If $X$ is quasi-affine over $S$ and $Y$ is quasi-separated over $S$, then $g$ is quasi-affine. In particular, any morphism from a quasi-affine scheme to a quasi-separated scheme is quasi-affine.

Proof. The base change $X \times _ S Y \to Y$ is quasi-affine by Lemma 29.13.5. The morphism $X \to X \times _ S Y$ is a quasi-compact immersion as $Y \to S$ is quasi-separated, see Schemes, Lemma 26.21.11. A quasi-compact immersion is quasi-affine by Lemma 29.13.6 and the composition of quasi-affine morphisms is quasi-affine (see Lemma 29.13.4). Thus we win. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).