Lemma 29.13.7. Let $S$ be a scheme. Let $X$ be an affine scheme. A morphism $f : X \to S$ is quasi-affine if and only if it is quasi-compact. In particular any morphism from an affine scheme to a quasi-separated scheme is quasi-affine.

**Proof.**
Let $V \subset S$ be an affine open. Then $f^{-1}(V)$ is an open subscheme of the affine scheme $X$, hence quasi-affine if and only if it is quasi-compact. This proves the first assertion. The quasi-compactness of any $f : X \to S$ where $X$ is affine and $S$ quasi-separated follows from Schemes, Lemma 26.21.14 applied to $X \to S \to \mathop{\mathrm{Spec}}(\mathbf{Z})$.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)