Lemma 29.13.8. Suppose $g : X \to Y$ is a morphism of schemes over $S$. If $X$ is quasi-affine over $S$ and $Y$ is quasi-separated over $S$, then $g$ is quasi-affine. In particular, any morphism from a quasi-affine scheme to a quasi-separated scheme is quasi-affine.

Proof. The base change $X \times _ S Y \to Y$ is quasi-affine by Lemma 29.13.5. The morphism $X \to X \times _ S Y$ is a quasi-compact immersion as $Y \to S$ is quasi-separated, see Schemes, Lemma 26.21.11. A quasi-compact immersion is quasi-affine by Lemma 29.13.6 and the composition of quasi-affine morphisms is quasi-affine (see Lemma 29.13.4). Thus we win. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 054G. Beware of the difference between the letter 'O' and the digit '0'.