Lemma 32.11.1. Let $f : X \to S$ be a morphism of schemes. Assume that $f$ is surjective and finite, and assume that $X$ is affine. Then $S$ is affine.
A scheme, admitting a finite surjective map from an affine scheme, is affine.
Proof.
Since $f$ is surjective and $X$ is quasi-compact we see that $S$ is quasi-compact. Since $X$ is separated and $f$ is surjective and universally closed (Morphisms, Lemma 29.44.7), we see that $S$ is separated (Morphisms, Lemma 29.41.11).
By Lemma 32.9.8 we can write $X = \mathop{\mathrm{lim}}\nolimits _ a X_ a$ with $X_ a \to S$ finite and of finite presentation. By Lemma 32.4.13 we see that $X_ a$ is affine for some $a \in A$. Replacing $X$ by $X_ a$ we may assume that $X \to S$ is surjective, finite, of finite presentation and that $X$ is affine.
By Proposition 32.5.4 we may write $S = \mathop{\mathrm{lim}}\nolimits _{i \in I} S_ i$ as a directed limits of schemes of finite type over $\mathbf{Z}$. By Lemma 32.10.1 we can after shrinking $I$ assume there exist schemes $X_ i \to S_ i$ of finite presentation such that $X_{i'} = X_ i \times _ S S_{i'}$ for $i' \geq i$ and such that $X = \mathop{\mathrm{lim}}\nolimits _ i X_ i$. By Lemma 32.8.3 we may assume that $X_ i \to S_ i$ is finite for all $i \in I$ as well. By Lemma 32.4.13 once again we may assume that $X_ i$ is affine for all $i \in I$. Hence the result follows from the Noetherian case, see Cohomology of Schemes, Lemma 30.13.3.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (5)
Comment #3024 by Brian Lawrence on
Comment #4056 by Laurent Moret-Bailly on
Comment #4138 by Johan on
Comment #4188 by BCnrd on
Comment #4382 by Johan on