The Stacks project

Lemma 65.31.4. Let $S$ be a scheme. Let $X \to Y \to Z$ be morphisms of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Let $x \in |X|$ with image $y \in |Y|$.

  1. If $\mathcal{F}$ is flat at $x$ over $Y$ and $Y$ is flat at $y$ over $Z$, then $\mathcal{F}$ is flat at $x$ over $Z$.

  2. Let $x : \mathop{\mathrm{Spec}}(K) \to X$ be a representative of $x$. If

    1. $\mathcal{F}$ is flat at $x$ over $Y$,

    2. $x^*\mathcal{F} \not= 0$, and

    3. $\mathcal{F}$ is flat at $x$ over $Z$,

    then $Y$ is flat at $y$ over $Z$.

  3. Let $\overline{x}$ be a geometric point of $X$ lying over $x$ with image $\overline{y}$ in $Y$. If $\mathcal{F}_{\overline{x}}$ is a faithfully flat $\mathcal{O}_{Y, \overline{y}}$-module and $\mathcal{F}$ is flat at $x$ over $Z$, then $Y$ is flat at $y$ over $Z$.

Proof. Pick $\overline{x}$ and $\overline{y}$ as in part (3) and denote $\overline{z}$ the induced geometric point of $Z$. Via the characterization of flatness in Lemmas 65.31.1 and 65.30.8 the lemma reduces to a purely algebraic question on the local ring map $\mathcal{O}_{Z, \overline{z}} \to \mathcal{O}_{Y, \overline{y}}$ and the module $\mathcal{F}_{\overline{x}}$. Part (1) follows from Algebra, Lemma 10.39.4. We remark that condition (2)(b) guarantees that $\mathcal{F}_{\overline{x}}/ \mathfrak m_{\overline{y}} \mathcal{F}_{\overline{x}}$ is nonzero. Hence (2)(a) $+$ (2)(b) imply that $\mathcal{F}_{\overline{x}}$ is a faithfully flat $\mathcal{O}_{Y, \overline{y}}$-module, see Algebra, Lemma 10.39.15. Thus (2) is a special case of (3). Finally, (3) follows from Algebra, Lemma 10.39.10. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05VX. Beware of the difference between the letter 'O' and the digit '0'.