The Stacks project

Lemma 75.19.10. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. The following are equivalent:

  1. $f$ is formally smooth,

  2. for every diagram

    \[ \xymatrix{ U \ar[d] \ar[r]_\psi & V \ar[d] \\ X \ar[r]^ f & Y } \]

    where $U$ and $V$ are schemes and the vertical arrows are étale the morphism of schemes $\psi $ is formally smooth (as in More on Morphisms, Definition 37.6.1), and

  3. for one such diagram with surjective vertical arrows the morphism $\psi $ is formally smooth.

Proof. We have seen that (1) implies (2) and (3) in Lemma 75.19.5. Assume (3). The proof that $f$ is formally smooth is entirely similar to the proof of (1) $\Rightarrow $ (2) of Lemma 75.19.6.

Consider a solid commutative diagram

\[ \xymatrix{ X \ar[d]_ f & T \ar[d]^ i \ar[l]^ a \\ Y & T' \ar[l] \ar@{-->}[lu] } \]

as in Definition 75.19.1. We will show the dotted arrow exists thereby proving that $f$ is formally smooth. Let $\mathcal{F}$ be the sheaf of sets on $(T')_{spaces, {\acute{e}tale}}$ of Lemma 75.17.4 as in the special case discussed in Remark 75.17.6. Let

\[ \mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ T}(a^*\Omega _{X/Y}, \mathcal{C}_{T/T'}) \]

be the sheaf of $\mathcal{O}_ T$-modules on $T_{spaces, {\acute{e}tale}}$ with action $\mathcal{H} \times \mathcal{F} \to \mathcal{F}$ as in Lemma 75.17.5. The action $\mathcal{H} \times \mathcal{F} \to \mathcal{F}$ turns $\mathcal{F}$ into a pseudo $\mathcal{H}$-torsor, see Cohomology on Sites, Definition 21.4.1. Our goal is to show that $\mathcal{F}$ is a trivial $\mathcal{H}$-torsor. There are two steps: (I) To show that $\mathcal{F}$ is a torsor we have to show that $\mathcal{F}$ has étale locally a section. (II) To show that $\mathcal{F}$ is the trivial torsor it suffices to show that $H^1(T_{\acute{e}tale}, \mathcal{H}) = 0$, see Cohomology on Sites, Lemma 21.4.3.

First we prove (I). To see this consider a diagram (which exists because we are assuming (3))

\[ \xymatrix{ U \ar[d] \ar[r]_\psi & V \ar[d] \\ X \ar[r]^ f & Y } \]

where $U$ and $V$ are schemes, the vertical arrows are étale and surjective, and $\psi $ is formally smooth. By Lemma 75.13.5 the morphism $V \to Y$ is formally étale. Thus by Lemma 75.13.3 the composition $U \to Y$ is formally smooth. Then (I) follows from Lemma 75.13.6 part (4).

Finally we prove (II). By Lemma 75.19.8 we see that $\Omega _{U/V}$ locally projective. Hence $\Omega _{X/Y}$ is locally projective, see Descent on Spaces, Lemma 73.6.5. Hence $a^*\Omega _{X/Y}$ is locally projective, see Properties of Spaces, Lemma 65.31.3. Hence

\[ H^1(T_{\acute{e}tale}, \mathcal{H}) = H^1(T_{\acute{e}tale}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ T}(a^*\Omega _{X/Y}, \mathcal{C}_{T/T'}) = 0 \]

by Lemma 75.19.9 as desired. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 061K. Beware of the difference between the letter 'O' and the digit '0'.