Lemma 74.4.1. The morphism $\epsilon $ of (74.4.0.1) is a flat morphism of ringed sites. In particular the functor $\epsilon ^* : \textit{Mod}(\mathcal{O}_ X) \to \textit{Mod}(\mathcal{O}_{\acute{e}tale})$ is exact. Moreover, if $\epsilon ^*\mathcal{F} = 0$, then $\mathcal{F} = 0$.

**Proof.**
The flatness of the morphism $\epsilon $ is Descent, Lemma 35.10.1. Here is another proof. We have to show that $\mathcal{O}_{\acute{e}tale}$ is a flat $\epsilon ^{-1}\mathcal{O}_ X$-module. To do this it suffices to check $\mathcal{O}_{X, x} \to \mathcal{O}_{{\acute{e}tale}, \overline{x}}$ is flat for any geometric point $\overline{x}$ of $X$, see Modules on Sites, Lemma 18.39.3, Sites, Lemma 7.34.2, and Étale Cohomology, Remarks 59.29.11. By Étale Cohomology, Lemma 59.33.1 we see that $\mathcal{O}_{{\acute{e}tale}, \overline{x}}$ is the strict henselization of $\mathcal{O}_{X, x}$. Thus $\mathcal{O}_{X, x} \to \mathcal{O}_{{\acute{e}tale}, \overline{x}}$ is faithfully flat by More on Algebra, Lemma 15.45.1.

The exactness of $\epsilon ^*$ follows from the flatness of $\epsilon $ by Modules on Sites, Lemma 18.31.2.

Let $\mathcal{F}$ be an $\mathcal{O}_ X$-module. If $\epsilon ^*\mathcal{F} = 0$, then with notation as above

(Modules on Sites, Lemma 18.36.4) for all geometric points $\overline{x}$. By faithful flatness of $\mathcal{O}_{X, x} \to \mathcal{O}_{{\acute{e}tale}, \overline{x}}$ we conclude $\mathcal{F}_ x = 0$ for all $x \in X$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)