The Stacks project

Example 21.39.2 (Computing homology). In Example 21.39.1 we can compute the functors $H_ n(\mathcal{C}, -)$ as follows. Let $\mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\textit{Ab}(\mathcal{C}))$. Consider the chain complex

\[ K_\bullet (\mathcal{F}) : \ \ldots \to \bigoplus \nolimits _{U_2 \to U_1 \to U_0} \mathcal{F}(U_0) \to \bigoplus \nolimits _{U_1 \to U_0} \mathcal{F}(U_0) \to \bigoplus \nolimits _{U_0} \mathcal{F}(U_0) \]

where the transition maps are given by

\[ (U_2 \to U_1 \to U_0, s) \longmapsto (U_1 \to U_0, s) - (U_2 \to U_0, s) + (U_2 \to U_1, s|_{U_1}) \]

and similarly in other degrees. By construction

\[ H_0(\mathcal{C}, \mathcal{F}) = \mathop{\mathrm{colim}}\nolimits _{\mathcal{C}^{opp}} \mathcal{F} = H_0(K_\bullet (\mathcal{F})), \]

see Categories, Lemma 4.14.12. The construction of $K_\bullet (\mathcal{F})$ is functorial in $\mathcal{F}$ and transforms short exact sequences of $\textit{Ab}(\mathcal{C})$ into short exact sequences of complexes. Thus the sequence of functors $\mathcal{F} \mapsto H_ n(K_\bullet (\mathcal{F}))$ forms a $\delta $-functor, see Homology, Definition 12.12.1 and Lemma 12.13.12. For $\mathcal{F} = j_{U!}\mathbf{Z}_ U$ the complex $K_\bullet (\mathcal{F})$ is the complex associated to the free $\mathbf{Z}$-module on the simplicial set $X_\bullet $ with terms

\[ X_ n = \coprod \nolimits _{U_ n \to \ldots \to U_1 \to U_0} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(U_0, U) \]

This simplicial set is homotopy equivalent to the constant simplicial set on a singleton $\{ *\} $. Namely, the map $X_\bullet \to \{ *\} $ is obvious, the map $\{ *\} \to X_ n$ is given by mapping $*$ to $(U \to \ldots \to U, \text{id}_ U)$, and the maps

\[ h_{n, i} : X_ n \longrightarrow X_ n \]

(Simplicial, Lemma 14.26.2) defining the homotopy between the two maps $X_\bullet \to X_\bullet $ are given by the rule

\[ h_{n, i} : (U_ n \to \ldots \to U_0, f) \longmapsto (U_ n \to \ldots \to U_ i \to U \to \ldots \to U, \text{id}) \]

for $i > 0$ and $h_{n, 0} = \text{id}$. Verifications omitted. This implies that $K_\bullet (j_{U!}\mathbf{Z}_ U)$ has trivial cohomology in negative degrees (by the functoriality of Simplicial, Remark 14.26.4 and the result of Simplicial, Lemma 14.27.1). Thus $K_\bullet (\mathcal{F})$ computes the left derived functors $H_ n(\mathcal{C}, -)$ of $H_0(\mathcal{C}, -)$ for example by (the duals of) Homology, Lemma 12.12.4 and Derived Categories, Lemma 13.16.6.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08PG. Beware of the difference between the letter 'O' and the digit '0'.