The Stacks project

Lemma 67.12.2. Let $S$ be a scheme. Let $Z \to Y \to X$ be morphisms of algebraic spaces over $S$.

  1. If $Z \to X$ is representable, locally of finite type, locally quasi-finite, separated, and a monomorphism, then $Z \to Y$ is representable, locally of finite type, locally quasi-finite, separated, and a monomorphism.

  2. If $Z \to X$ is an immersion and $Y \to X$ is locally separated, then $Z \to Y$ is an immersion.

  3. If $Z \to X$ is a closed immersion and $Y \to X$ is separated, then $Z \to Y$ is a closed immersion.

Proof. In each case the proof is to contemplate the commutative diagram

\[ \xymatrix{ Z \ar[r] \ar[rd] & Y \times _ X Z \ar[r] \ar[d] & Z \ar[d] \\ & Y \ar[r] & X } \]

where the composition of the top horizontal arrows is the identity. Let us prove (1). The first horizontal arrow is a section of $Y \times _ X Z \to Z$, whence representable, locally of finite type, locally quasi-finite, separated, and a monomorphism by Lemma 67.4.7. The arrow $Y \times _ X Z \to Y$ is a base change of $Z \to X$ hence is representable, locally of finite type, locally quasi-finite, separated, and a monomorphism (as each of these properties of morphisms of schemes is stable under base change, see Spaces, Remark 65.4.1). Hence the same is true for the composition (as each of these properties of morphisms of schemes is stable under composition, see Spaces, Remark 65.4.2). This proves (1). The other results are proved in exactly the same manner. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AGC. Beware of the difference between the letter 'O' and the digit '0'.