Lemma 85.35.2. Let $X$ be an algebraic space over a scheme $S$. Let $a : U \to X$ be an fppf hypercovering. Suppose given $K_0 \in D_\mathit{QCoh}(U_0)$ and an isomorphism
satisfying the cocycle condition on $U_1$. Set $\tau ^ n_ i : [0] \to [n]$, $0 \mapsto i$ and set $K_ n = Lf_{\tau ^ n_ n}^*K_0$. Assume $\mathop{\mathrm{Ext}}\nolimits ^ i_{\mathcal{O}_{U_ n}}(K_ n, K_ n) = 0$ for $i < 0$. Then there exists an object $K \in D_\mathit{QCoh}(\mathcal{O}_ X)$ and an isomorphism $La_0^*K \to K$ compatible with $\alpha $.
Comments (0)