Lemma 51.4.7. Let $I \subset A$ be a finitely generated ideal of a ring $A$. If $M$ is a finite $A$-module, then $H^ i_{V(I)}(M) = 0$ for $i > \dim (\text{Supp}(M))$. In particular, we have $\text{cd}(A, I) \leq \dim (A)$.
Proof. We first prove the second statement. Recall that $\dim (A)$ denotes the Krull dimension. By Lemma 51.4.6 we may assume $A$ is local. If $V(I) = \emptyset $, then the result is true. If $V(I) \not= \emptyset $, then $\dim (\mathop{\mathrm{Spec}}(A) \setminus V(I)) < \dim (A)$ because the closed point is missing. Observe that $U = \mathop{\mathrm{Spec}}(A) \setminus V(I)$ is a quasi-compact open of the spectral space $\mathop{\mathrm{Spec}}(A)$, hence a spectral space itself. See Algebra, Lemma 10.26.2 and Topology, Lemma 5.23.5. Thus Cohomology, Proposition 20.22.4 implies $H^ i(U, \mathcal{F}) = 0$ for $i \geq \dim (A)$ which implies what we want by Lemma 51.4.1. In the Noetherian case the reader may use Grothendieck's Cohomology, Proposition 20.20.7.
We will deduce the first statement from the second. Let $\mathfrak a$ be the annihilator of the finite $A$-module $M$. Set $B = A/\mathfrak a$. Recall that $\mathop{\mathrm{Spec}}(B) = \text{Supp}(M)$, see Algebra, Lemma 10.40.5. Set $J = IB$. Then $M$ is a $B$-module and $H^ i_{V(I)}(M) = H^ i_{V(J)}(M)$, see Dualizing Complexes, Lemma 47.9.2. Since $\text{cd}(B, J) \leq \dim (B) = \dim (\text{Supp}(M))$ by the first part we conclude. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)