The Stacks project

93.11 Algebraic spaces

The deformation theory of algebraic spaces.

Example 93.11.1 (Algebraic spaces). Let $\mathcal{F}$ be the category defined as follows

  1. an object is a pair $(A, X)$ consisting of an object $A$ of $\mathcal{C}_\Lambda $ and an algebraic space $X$ flat over $A$, and

  2. a morphism $(f, g) : (B, Y) \to (A, X)$ consists of a morphism $f : B \to A$ in $\mathcal{C}_\Lambda $ together with a morphism $g : X \to Y$ of algebraic spaces over $\Lambda $ such that

    \[ \xymatrix{ X \ar[r]_ g \ar[d] & Y \ar[d] \\ \mathop{\mathrm{Spec}}(A) \ar[r]^ f & \mathop{\mathrm{Spec}}(B) } \]

    is a cartesian commutative diagram of algebraic spaces.

The functor $p : \mathcal{F} \to \mathcal{C}_\Lambda $ sends $(A, X)$ to $A$ and $(f, g)$ to $f$. It is clear that $p$ is cofibred in groupoids. Given an algebraic space $X$ over $k$, let $x_0 = (k, X)$ be the corresponding object of $\mathcal{F}(k)$. We set

\[ \mathcal{D}\! \mathit{ef}_ X = \mathcal{F}_{x_0} \]

Lemma 93.11.2. Example 93.11.1 satisfies the Rim-Schlessinger condition (RS). In particular, $\mathcal{D}\! \mathit{ef}_ X$ is a deformation category for any algebraic space $X$ over $k$.

Proof. Let $A_1 \to A$ and $A_2 \to A$ be morphisms of $\mathcal{C}_\Lambda $. Assume $A_2 \to A$ is surjective. According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that the functor $\mathcal{F}(A_1 \times _ A A_2) \to \mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)$ is an equivalence of categories. Observe that

\[ \xymatrix{ \mathop{\mathrm{Spec}}(A) \ar[r] \ar[d] & \mathop{\mathrm{Spec}}(A_2) \ar[d] \\ \mathop{\mathrm{Spec}}(A_1) \ar[r] & \mathop{\mathrm{Spec}}(A_1 \times _ A A_2) } \]

is a pushout diagram as in Pushouts of Spaces, Lemma 81.6.2. Thus the lemma is a special case of Pushouts of Spaces, Lemma 81.6.7. $\square$

Lemma 93.11.3. In Example 93.11.1 let $X$ be an algebraic space over $k$. Then

\[ \text{Inf}(\mathcal{D}\! \mathit{ef}_ X) = \text{Ext}^0_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\Omega _{X/k}, \mathcal{O}_ X) = \text{Der}_ k(\mathcal{O}_ X, \mathcal{O}_ X) \]

and

\[ T\mathcal{D}\! \mathit{ef}_ X = \text{Ext}^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X) \]

Proof. Recall that $\text{Inf}(\mathcal{D}\! \mathit{ef}_ X)$ is the set of automorphisms of the trivial deformation $X' = X \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k[\epsilon ])$ of $X$ to $k[\epsilon ]$ equal to the identity modulo $\epsilon $. By Deformation Theory, Lemma 91.14.2 this is equal to $\text{Ext}^0_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X)$. The equality $\text{Ext}^0_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\Omega _{X/k}, \mathcal{O}_ X)$ follows from More on Morphisms of Spaces, Lemma 76.21.4. The equality $\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\Omega _{X/k}, \mathcal{O}_ X) = \text{Der}_ k(\mathcal{O}_ X, \mathcal{O}_ X)$ follows from More on Morphisms of Spaces, Definition 76.7.2 and Modules on Sites, Definition 18.33.3.

Recall that $T_{x_0}\mathcal{D}\! \mathit{ef}_ X$ is the set of isomorphism classes of flat deformations $X'$ of $X$ to $k[\epsilon ]$, more precisely, the set of isomorphism classes of $\mathcal{D}\! \mathit{ef}_ X(k[\epsilon ])$. Thus the second statement of the lemma follows from Deformation Theory, Lemma 91.14.2. $\square$

Lemma 93.11.4. In Lemma 93.11.3 if $X$ is proper over $k$, then $\text{Inf}(\mathcal{D}\! \mathit{ef}_ X)$ and $T\mathcal{D}\! \mathit{ef}_ X$ are finite dimensional.

Proof. By the lemma we have to show $\mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X)$ and $\mathop{\mathrm{Ext}}\nolimits ^0_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/k}, \mathcal{O}_ X)$ are finite dimensional. By More on Morphisms of Spaces, Lemma 76.21.5 and the fact that $X$ is Noetherian, we see that $\mathop{N\! L}\nolimits _{X/k}$ has coherent cohomology sheaves zero except in degrees $0$ and $-1$. By Derived Categories of Spaces, Lemma 75.8.4 the displayed $\mathop{\mathrm{Ext}}\nolimits $-groups are finite $k$-vector spaces and the proof is complete. $\square$

In Example 93.11.1 if $X$ is a proper algebraic space over $k$, then $\mathcal{D}\! \mathit{ef}_ X$ admits a presentation by a smooth prorepresentable groupoid in functors over $\mathcal{C}_\Lambda $ and a fortiori has a (minimal) versal formal object. This follows from Lemmas 93.11.2 and 93.11.4 and the general discussion in Section 93.3.

Lemma 93.11.5. In Example 93.11.1 assume $X$ is a proper algebraic space over $k$. Assume $\Lambda $ is a complete local ring with residue field $k$ (the classical case). Then the functor

\[ F : \mathcal{C}_\Lambda \longrightarrow \textit{Sets},\quad A \longmapsto \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}\! \mathit{ef}_ X(A))/\cong \]

of isomorphism classes of objects has a hull. If $\text{Der}_ k(\mathcal{O}_ X, \mathcal{O}_ X) = 0$, then $F$ is prorepresentable.

Proof. The existence of a hull follows immediately from Lemmas 93.11.2 and 93.11.4 and Formal Deformation Theory, Lemma 90.16.6 and Remark 90.15.7.

Assume $\text{Der}_ k(\mathcal{O}_ X, \mathcal{O}_ X) = 0$. Then $\mathcal{D}\! \mathit{ef}_ X$ and $F$ are equivalent by Formal Deformation Theory, Lemma 90.19.13. Hence $F$ is a deformation functor (because $\mathcal{D}\! \mathit{ef}_ X$ is a deformation category) with finite tangent space and we can apply Formal Deformation Theory, Theorem 90.18.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E3Y. Beware of the difference between the letter 'O' and the digit '0'.