The Stacks project

Compare with discussion in [Rizzardo].

Lemma 57.8.7. Let $X \to S$ and $Y \to S$ be morphisms of quasi-compact and quasi-separated schemes. Let $\Phi : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$ be a Fourier-Mukai functor with pseudo-coherent kernel $K \in D_\mathit{QCoh}(\mathcal{O}_{X \times _ S Y})$. Let $a : D_\mathit{QCoh}(\mathcal{O}_ Y) \to D_\mathit{QCoh}(\mathcal{O}_{X \times _ S Y})$ be the right adjoint to $R\text{pr}_{2, *}$, see Duality for Schemes, Lemma 48.3.1. Denote

\[ K' = (Y \times _ S X \to X \times _ S Y)^* R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_{X \times _ S Y}}(K, a(\mathcal{O}_ Y)) \in D_\mathit{QCoh}(\mathcal{O}_{Y \times _ S X}) \]

and denote $\Phi ' : D_\mathit{QCoh}(\mathcal{O}_ Y) \to D_\mathit{QCoh}(\mathcal{O}_ X)$ the corresponding Fourier-Mukai transform. There is a canonical map

\[ \mathop{\mathrm{Hom}}\nolimits _ X(M, \Phi '(N)) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _ Y(\Phi (M), N) \]

functorial in $M$ in $D_\mathit{QCoh}(\mathcal{O}_ X)$ and $N$ in $D_\mathit{QCoh}(\mathcal{O}_ Y)$ which is an isomorphism if

  1. $N$ is perfect, or

  2. $K$ is perfect and $X \to S$ is proper flat and of finite presentation.

Proof. By Lemma 57.8.2 we obtain a functor $\Phi $ as in the statement. Observe that $a(\mathcal{O}_ Y)$ is in $D^+_\mathit{QCoh}(\mathcal{O}_{X \times _ S Y})$ by Duality for Schemes, Lemma 48.3.5. Hence for $K$ pseudo-coherent we have $K' \in D_\mathit{QCoh}(\mathcal{O}_{Y \times _ S X})$ by Derived Categories of Schemes, Lemma 36.10.8 we we obtain $\Phi '$ as indicated.

We abbreviate $\otimes ^\mathbf {L} = \otimes _{\mathcal{O}_{X \times _ S Y}}^\mathbf {L}$ and $\mathop{\mathcal{H}\! \mathit{om}}\nolimits = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_{X \times _ S Y}}$. Let $M$ be in $D_\mathit{QCoh}(\mathcal{O}_ X)$ and let $N$ be in $D_\mathit{QCoh}(\mathcal{O}_ Y)$. We have

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _ Y(\Phi (M), N) & = \mathop{\mathrm{Hom}}\nolimits _ Y(R\text{pr}_{2, *}(L\text{pr}_1^*M \otimes ^\mathbf {L} K), N) \\ & = \mathop{\mathrm{Hom}}\nolimits _{X \times _ S Y}(L\text{pr}_1^*M \otimes ^\mathbf {L} K, a(N)) \\ & = \mathop{\mathrm{Hom}}\nolimits _{X \times _ S Y}(L\text{pr}_1^*M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, a(N))) \\ & = \mathop{\mathrm{Hom}}\nolimits _ X(M, R\text{pr}_{1, *}R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, a(N))) \end{align*}

where we have used Cohomology, Lemmas 20.42.2 and 20.28.1. There are canonical maps

\[ L\text{pr}_2^*N \otimes ^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, a(\mathcal{O}_ Y)) \xrightarrow {\alpha } R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, L\text{pr}_2^*N \otimes ^\mathbf {L} a(\mathcal{O}_ Y)) \xrightarrow {\beta } R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, a(N)) \]

Here $\alpha $ is Cohomology, Lemma 20.42.6 and $\beta $ is Duality for Schemes, Equation (48.8.0.1). Combining all of these arrows we obtain the functorial displayed arrow in the statement of the lemma.

The arrow $\alpha $ is an isomorphism by Derived Categories of Schemes, Lemma 36.10.9 as soon as either $K$ or $N$ is perfect. The arrow $\beta $ is an isomorphism if $N$ is perfect by Duality for Schemes, Lemma 48.8.1 or in general if $X \to S$ is flat proper of finite presentation by Duality for Schemes, Lemma 48.12.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FYW. Beware of the difference between the letter 'O' and the digit '0'.