Lemma 88.4.4. Let $(A_1, I_1) \to (A_2, I_2)$ be as in Remark 88.2.3 with $A_1$ and $A_2$ Noetherian. Let $B_1$ be in (88.2.0.2) for $(A_1, I_1)$. Let $B_2$ be the base change of $B_1$. Let $f_1 \in B_1$ with image $f_2 \in B_2$. If $\mathop{\mathrm{Ext}}\nolimits ^1_{B_1}(\mathop{N\! L}\nolimits _{B_1/A_1}^\wedge , N_1)$ is annihilated by $f_1$ for every $B_1$-module $N_1$, then $\mathop{\mathrm{Ext}}\nolimits ^1_{B_2}(\mathop{N\! L}\nolimits _{B_2/A_2}^\wedge , N_2)$ is annihilated by $f_2$ for every $B_2$-module $N_2$.
Proof. By Lemma 88.3.4 there is a map
\[ \mathop{N\! L}\nolimits _{B_1/A_1} \otimes _{B_2} B_1 \to \mathop{N\! L}\nolimits _{B_2/A_2} \]
which induces and isomorphism on $H^0$ and a surjection on $H^{-1}$. Thus the result by More on Algebra, Lemmas 15.84.6, 15.84.7, and 15.84.9 the last two applied with the principal ideals $(f_1) \subset B_1$ and $(f_2) \subset B_2$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)