The Stacks project

The flat locus is open (non-Noetherian version).

Theorem 38.13.6. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Assume

  1. $X \to S$ is locally of finite presentation,

  2. $\mathcal{F}$ is an $\mathcal{O}_ X$-module of finite type, and

  3. the set of weakly associated points of $S$ is locally finite in $S$.

Then $U = \{ x \in X \mid \mathcal{F}\text{ flat at }x\text{ over }S\} $ is open in $X$ and $\mathcal{F}|_ U$ is an $\mathcal{O}_ U$-module of finite presentation and flat over $S$.

Proof. Let $x \in X$ be such that $\mathcal{F}$ is flat at $x$ over $S$. We have to find an open neighbourhood of $x$ such that $\mathcal{F}$ restricts to a $S$-flat finitely presented module on this neighbourhood. The problem is local on $X$ and $S$, hence we may assume that $X$ and $S$ are affine. As $\mathcal{F}_ x$ is a finitely presented $\mathcal{O}_{X, x}$-module by Lemma 38.10.9 we conclude from Algebra, Lemma 10.126.5 there exists a finitely presented $\mathcal{O}_ X$-module $\mathcal{F}'$ and a map $\varphi : \mathcal{F}' \to \mathcal{F}$ which induces an isomorphism $\varphi _ x : \mathcal{F}'_ x \to \mathcal{F}_ x$. In particular we see that $\mathcal{F}'$ is flat over $S$ at $x$, hence by openness of flatness More on Morphisms, Theorem 37.15.1 we see that after shrinking $X$ we may assume that $\mathcal{F}'$ is flat over $S$. As $\mathcal{F}$ is of finite type after shrinking $X$ we may assume that $\varphi $ is surjective, see Modules, Lemma 17.9.4 or alternatively use Nakayama's lemma (Algebra, Lemma 10.20.1). By Lemma 38.13.5 we have

\[ \text{WeakAss}_ X(\mathcal{F}') \subset \bigcup \nolimits _{s \in \text{WeakAss}(S)} \text{Ass}_{X_ s}(\mathcal{F}'_ s) \]

As $\text{WeakAss}(S)$ is finite by assumption and since $\text{Ass}_{X_ s}(\mathcal{F}'_ s)$ is finite by Divisors, Lemma 31.2.5 we conclude that $\text{WeakAss}_ X(\mathcal{F}')$ is finite. Using Algebra, Lemma 10.15.2 we may, after shrinking $X$ once more, assume that $\text{WeakAss}_ X(\mathcal{F}')$ is contained in the generalization of $x$. Now consider $\mathcal{K} = \mathop{\mathrm{Ker}}(\varphi )$. We have $\text{WeakAss}_ X(\mathcal{K}) \subset \text{WeakAss}_ X(\mathcal{F}')$ (by Divisors, Lemma 31.5.4) but on the other hand, $\varphi _ x$ is an isomorphism, also $\varphi _{x'}$ is an isomorphism for all $x' \leadsto x$. We conclude that $\text{WeakAss}_ X(\mathcal{K}) = \emptyset $ whence $\mathcal{K} = 0$ by Divisors, Lemma 31.5.5. $\square$


Comments (1)

Comment #1114 by Simon Pepin Lehalleur on

Suggested slogan: The flat locus is open (non-noetherian version).

There are also:

  • 2 comment(s) on Section 38.13: Flat finite type modules, Part II

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05IK. Beware of the difference between the letter 'O' and the digit '0'.