The Stacks project

Lemma 32.19.2. Let $f : X \to Y$ be a morphism of schemes. Let $y \in Y$. Assume $f$ is proper and $\dim (X_ y) = d$. Then

  1. for $\mathcal{F} \in \mathit{QCoh}(\mathcal{O}_ X)$ we have $(R^ if_*\mathcal{F})_ y = 0$ for all $i > d$,

  2. there is an affine open neighbourhood $V \subset Y$ of $y$ such that $f^{-1}(V) \to V$ and $d$ satisfy the assumptions and conclusions of Lemma 32.19.1.

Proof. By Morphisms, Lemma 29.28.4 and the fact that $f$ is closed, we can find an affine open neighbourhood $V$ of $y$ such that the fibres over points of $V$ all have dimension $\leq d$. Thus we may assume $X \to Y$ is a proper morphism all of whose fibres have dimension $\leq d$ with $Y$ affine. We will show that (2) holds, which will immediately imply (1) for all $y \in Y$.

By Lemma 32.13.2 we can write $X = \mathop{\mathrm{lim}}\nolimits X_ i$ as a cofiltered limit with $X_ i \to Y$ proper and of finite presentation and such that both $X \to X_ i$ and transition morphisms are closed immersions. For some $i$ we have that $X_ i \to Y$ has fibres of dimension $\leq d$, see Lemma 32.18.1. For a quasi-coherent $\mathcal{O}_ X$-module $\mathcal{F}$ we have $R^ pf_*\mathcal{F} = R^ pf_{i, *}(X \to X_ i)_*\mathcal{F}$ by Cohomology of Schemes, Lemma 30.2.3 and Leray (Cohomology, Lemma 20.13.8). Thus we may replace $X$ by $X_ i$ and reduce to the case discussed in the next paragraph.

Assume $Y$ is affine and $f : X \to Y$ is proper and of finite presentation and all fibres have dimension $\leq d$. It suffices to show that $H^ p(X, \mathcal{F}) = 0$ for $p > d$. Namely, by Cohomology of Schemes, Lemma 30.4.6 we have $H^ p(X, \mathcal{F}) = H^0(Y, R^ pf_*\mathcal{F})$. On the other hand, $R^ pf_*\mathcal{F}$ is quasi-coherent on $Y$ by Cohomology of Schemes, Lemma 30.4.5, hence vanishing of global sections implies vanishing. Write $Y = \mathop{\mathrm{lim}}\nolimits _{i \in I} Y_ i$ as a cofiltered limit of affine schemes with $Y_ i$ the spectrum of a Noetherian ring (for example a finite type $\mathbf{Z}$-algebra). We can choose an element $0 \in I$ and a finite type morphism $X_0 \to Y_0$ such that $X \cong Y \times _{Y_0} X_0$, see Lemma 32.10.1. After increasing $0$ we may assume $X_0 \to Y_0$ is proper (Lemma 32.13.1) and that the fibres of $X_0 \to Y_0$ have dimension $\leq d$ (Lemma 32.18.1). Since $X \to X_0$ is affine, we find that $H^ p(X, \mathcal{F}) = H^ p(X_0, (X \to X_0)_*\mathcal{F})$ by Cohomology of Schemes, Lemma 30.2.4. This reduces us to the case discussed in the next paragraph.

Assume $Y$ is affine Noetherian and $f : X \to Y$ is proper and all fibres have dimension $\leq d$. In this case we can write $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ as a filtered colimit of coherent $\mathcal{O}_ X$-modules, see Properties, Lemma 28.22.7. Then $H^ p(X, \mathcal{F}) = \mathop{\mathrm{colim}}\nolimits H^ p(X, \mathcal{F}_ i)$ by Cohomology, Lemma 20.19.1. Thus we may assume $\mathcal{F}$ is coherent. In this case we see that $(R^ pf_*\mathcal{F})_ y = 0$ for all $y \in Y$ by Cohomology of Schemes, Lemma 30.20.9. Thus $R^ pf_*\mathcal{F} = 0$ and therefore $H^ p(X, \mathcal{F}) = 0$ (see above) and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E7D. Beware of the difference between the letter 'O' and the digit '0'.